From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi
---
src/network.c | 38 ++++++++++++++++++++++++++++++++++++++
1 files changed, 38 insertions(+), 0 deletions(-)
diff --git a/src/network.c b/src/network.c
index e6fb51e..a9e5027 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
@@ -16,6 +17,7 @@
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
+#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
@@ -62,7 +64,10 @@
case EXP:
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
+ if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+ case RANDOM:
+ return net.learning_rate * pow(rand_uniform(0,1), net.power);
case SIG:
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
default:
@@ -86,6 +91,8 @@
return "connected";
case RNN:
return "rnn";
+ case GRU:
+ return "gru";
case CRNN:
return "crnn";
case MAXPOOL:
@@ -108,6 +115,8 @@
return "shortcut";
case NORMALIZATION:
return "normalization";
+ case BATCHNORM:
+ return "batchnorm";
default:
break;
}
@@ -129,6 +138,7 @@
void forward_network(network net, network_state state)
{
+ state.workspace = net.workspace;
int i;
for(i = 0; i < net.n; ++i){
state.index = i;
@@ -146,12 +156,16 @@
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ forward_batchnorm_layer(l, state);
} else if(l.type == DETECTION){
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
} else if(l.type == RNN){
forward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ forward_gru_layer(l, state);
} else if(l.type == CRNN){
forward_crnn_layer(l, state);
} else if(l.type == CROP){
@@ -190,6 +204,8 @@
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == RNN){
update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == GRU){
+ update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == CRNN){
update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
@@ -200,6 +216,9 @@
float *get_network_output(network net)
{
+ #ifdef GPU
+ return get_network_output_gpu(net);
+ #endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
@@ -235,6 +254,7 @@
int i;
float *original_input = state.input;
float *original_delta = state.delta;
+ state.workspace = net.workspace;
for(i = net.n-1; i >= 0; --i){
state.index = i;
if(i == 0){
@@ -254,6 +274,8 @@
backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ backward_batchnorm_layer(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
@@ -268,6 +290,8 @@
backward_connected_layer(l, state);
} else if(l.type == RNN){
backward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ backward_gru_layer(l, state);
} else if(l.type == CRNN){
backward_crnn_layer(l, state);
} else if(l.type == LOCAL){
@@ -369,6 +393,11 @@
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].batch = b;
+ #ifdef CUDNN
+ if(net->layers[i].type == CONVOLUTIONAL){
+ cudnn_convolutional_setup(net->layers + i);
+ }
+ #endif
}
}
@@ -379,6 +408,7 @@
net->w = w;
net->h = h;
int inputs = 0;
+ size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
@@ -398,12 +428,20 @@
}else{
error("Cannot resize this type of layer");
}
+ if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
+#ifdef GPU
+ cuda_free(net->workspace);
+ net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+ free(net->workspace);
+ net->workspace = calloc(1, workspace_size);
+#endif
//fprintf(stderr, " Done!\n");
return 0;
}
--
Gitblit v1.10.0