From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/network.c |  927 ++++++++++++++++++++++++++++++++-------------------------
 1 files changed, 513 insertions(+), 414 deletions(-)

diff --git a/src/network.c b/src/network.c
index b75eddf..a9e5027 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,251 +1,245 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "blas.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
-#include "maxpool_layer.h"
+#include "activation_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
+#include "maxpool_layer.h"
+#include "avgpool_layer.h"
+#include "cost_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
 
-network make_network(int n, int batch)
+int get_current_batch(network net)
 {
-    network net;
-    net.n = n;
-    net.batch = batch;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
-    net.outputs = 0;
-    net.output = 0;
+    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+    return batch_num;
+}
+
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
     #ifdef GPU
-    net.input_cl = 0;
+        if(gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
+float get_current_rate(network net)
+{
+    int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+    switch (net.policy) {
+        case CONSTANT:
+            return net.learning_rate;
+        case STEP:
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+            }
+            return rate;
+        case EXP:
+            return net.learning_rate * pow(net.gamma, batch_num);
+        case POLY:
+            if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case RANDOM:
+            return net.learning_rate * pow(rand_uniform(0,1), net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+        default:
+            fprintf(stderr, "Policy is weird!\n");
+            return net.learning_rate;
+    }
+}
+
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case ACTIVE:
+            return "activation";
+        case LOCAL:
+            return "local";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case RNN:
+            return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
+        case MAXPOOL:
+            return "maxpool";
+        case AVGPOOL:
+            return "avgpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case DROPOUT:
+            return "dropout";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        case ROUTE:
+            return "route";
+        case SHORTCUT:
+            return "shortcut";
+        case NORMALIZATION:
+            return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
+        default:
+            break;
+    }
+    return "none";
+}
+
+network make_network(int n)
+{
+    network net = {0};
+    net.n = n;
+    net.layers = calloc(net.n, sizeof(layer));
+    net.seen = calloc(1, sizeof(int));
+    #ifdef GPU
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
     #endif
     return net;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
+void forward_network(network net, network_state state)
 {
-    int i;
-    fprintf(fp, "[convolutional]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-                            "height=%d\n"
-                            "width=%d\n"
-                            "channels=%d\n",
-                            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "filters=%d\n"
-                "size=%d\n"
-                "stride=%d\n"
-                "activation=%s\n",
-                l->n, l->size, l->stride,
-                get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    fprintf(fp, "\n\n");
-}
-void print_connected_cfg(FILE *fp, connected_layer *l, int first)
-{
-    int i;
-    fprintf(fp, "[connected]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "output=%d\n"
-            "activation=%s\n",
-            l->outputs,
-            get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
-{
-    fprintf(fp, "[maxpool]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "stride=%d\n\n", l->stride);
-}
-
-void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
-{
-    fprintf(fp, "[localresponsenormalization]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\n"
-                "alpha=%g\n"
-                "beta=%g\n"
-                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
-}
-
-void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
-{
-    fprintf(fp, "[softmax]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-void save_network(network net, char *filename)
-{
-    FILE *fp = fopen(filename, "w");
-    if(!fp) file_error(filename);
-    int i;
-    for(i = 0; i < net.n; ++i)
-    {
-        if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
-        else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
-        else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
-        else if(net.types[i] == NORMALIZATION)
-            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
-        else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
-    }
-    fclose(fp);
-}
-
-void forward_network(network net, float *input, int train)
-{
-    int i;
-    #ifdef GPU
-    cl_setup();
-    size_t size = get_network_input_size(net);
-    if(!net.input_cl){
-        net.input_cl = clCreateBuffer(cl.context,
-            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
-        check_error(cl);
-    }
-    cl_write_array(net.input_cl, input, size);
-    cl_mem input_cl = net.input_cl;
-    #endif
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            #ifdef GPU
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
-            #else
-            forward_convolutional_layer(layer, input);
-            #endif
-            input = layer.output;
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
-        }
-    }
-}
-
-void update_network(network net, float step, float momentum, float decay)
-{
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step, momentum, decay);
+        state.index = i;
+        layer l = net.layers[i];
+        if(l.delta){
+            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            forward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            forward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            forward_activation_layer(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            forward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            forward_batchnorm_layer(l, state);
+        } else if(l.type == DETECTION){
+            forward_detection_layer(l, state);
+        } else if(l.type == CONNECTED){
+            forward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            forward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            forward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer(l, state);
+        } else if(l.type == CROP){
+            forward_crop_layer(l, state);
+        } else if(l.type == COST){
+            forward_cost_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            forward_softmax_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            forward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            forward_avgpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            forward_dropout_layer(l, state);
+        } else if(l.type == ROUTE){
+            forward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            forward_shortcut_layer(l, state);
         }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, momentum, decay);
+        state.input = l.output;
+    }
+}
+
+void update_network(network net)
+{
+    int i;
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == DECONVOLUTIONAL){
+            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
+        } else if(l.type == CONNECTED){
+            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == RNN){
+            update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == GRU){
+            update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
-float *get_network_output_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == NORMALIZATION){
-        normalization_layer layer = *(normalization_layer *)net.layers[i];
-        return layer.output;
-    }
-    return 0;
-}
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    #ifdef GPU
+        return get_network_output_gpu(net);
+    #endif 
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].output;
 }
 
-float *get_network_delta_layer(network net, int i)
+float get_network_cost(network net)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta;
-    }
-    return 0;
-}
-
-float *get_network_delta(network net)
-{
-    return get_network_delta_layer(net, net.n-1);
-}
-
-float calculate_error_network(network net, float *truth)
-{
+    int i;
     float sum = 0;
-    float *delta = get_network_delta(net);
-    float *out = get_network_output(net);
-    int i, k = get_network_output_size(net);
-    for(i = 0; i < k; ++i){
-        //printf("%f, ", out[i]);
-        delta[i] = truth[i] - out[i];
-        sum += delta[i]*delta[i];
+    int count = 0;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == COST){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+        if(net.layers[i].type == DETECTION){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
     }
-    //printf("\n");
-    return sum;
+    return sum/count;
 }
 
 int get_predicted_class_network(network net)
@@ -255,217 +249,236 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, network_state state)
 {
-    float error = calculate_error_network(net, truth);
     int i;
-    float *prev_input;
-    float *prev_delta;
+    float *original_input = state.input;
+    float *original_delta = state.delta;
+    state.workspace = net.workspace;
     for(i = net.n-1; i >= 0; --i){
+        state.index = i;
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = original_delta;
         }else{
-            prev_input = get_network_output_layer(net, i-1);
-            prev_delta = get_network_delta_layer(net, i-1);
+            layer prev = net.layers[i-1];
+            state.input = prev.output;
+            state.delta = prev.delta;
         }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer(layer, prev_input, prev_delta);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            backward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            backward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            backward_activation_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            backward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            backward_batchnorm_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            if(i != 0) backward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            backward_avgpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            backward_dropout_layer(l, state);
+        } else if(l.type == DETECTION){
+            backward_detection_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            if(i != 0) backward_softmax_layer(l, state);
+        } else if(l.type == CONNECTED){
+            backward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            backward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            backward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer(l, state);
+        } else if(l.type == COST){
+            backward_cost_layer(l, state);
+        } else if(l.type == ROUTE){
+            backward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            backward_shortcut_layer(l, state);
         }
     }
+}
+
+float train_network_datum(network net, float *x, float *y)
+{
+    *net.seen += net.batch;
+#ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+#endif
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.input = x;
+    state.delta = 0;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
+    float error = get_network_cost(net);
+    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
     return error;
 }
 
-float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
+float train_network_sgd(network net, data d, int n)
 {
-    forward_network(net, x, 1);
-    //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
-    update_network(net, step, momentum, decay);
-    //return (y[class]?1:0);
-    return error;
-}
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
 
-float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
-{
     int i;
-    float error = 0;
-    int correct = 0;
-    int pos = 0;
+    float sum = 0;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
-        float *y = d.y.vals[index];
-        int class = get_predicted_class_network(net);
-        correct += (y[class]?1:0);
-        if(y[1]){
-            error += err;
-            ++pos;
-        }
-
-
-        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
-        //if((i+1)%10 == 0){
-        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
-        //}
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
     }
-    //printf("Accuracy: %f\n",(float) correct/n);
-    return error/pos;
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
 }
-float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
+
+float train_network(network net, data d)
 {
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
     int i;
-    int correct = 0;
+    float sum = 0;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float *x = d.X.vals[index];
-        float *y = d.y.vals[index];
-        forward_network(net, x, 1);
-        int class = get_predicted_class_network(net);
-        backward_network(net, x, y);
-        correct += (y[class]?1:0);
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
     }
-    update_network(net, step, momentum, decay);
-    return (float)correct/n;
-
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
 }
 
-
-void train_network(network net, data d, float step, float momentum, float decay)
+float train_network_batch(network net, data d, int n)
 {
-    int i;
-    int correct = 0;
-    for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
-        if(i%100 == 0){
-            visualize_network(net);
-            cvWaitKey(10);
+    int i,j;
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    state.train = 1;
+    state.delta = 0;
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
+            sum += get_network_cost(net);
         }
+        update_network(net);
     }
-    visualize_network(net);
-    cvWaitKey(100);
-    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
+    return (float)sum/(n*batch);
 }
 
-int get_network_input_size_layer(network net, int i)
+void set_batch_network(network *net, int b)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.h*layer.w*layer.c;
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        net->layers[i].batch = b;
+        #ifdef CUDNN
+        if(net->layers[i].type == CONVOLUTIONAL){
+            cudnn_convolutional_setup(net->layers + i);
+        }
+        #endif
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.h*layer.w*layer.c;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.inputs;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.inputs;
-    }
-    return 0;
 }
 
-int get_network_output_size_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        image output = get_convolutional_image(layer);
-        return output.h*output.w*output.c;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        image output = get_maxpool_image(layer);
-        return output.h*output.w*output.c;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.outputs;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.inputs;
-    }
-    return 0;
-}
-
-int resize_network(network net, int h, int w, int c)
+int resize_network(network *net, int w, int h)
 {
     int i;
-    for (i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
-            image output = get_convolutional_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }else if(net.types[i] == MAXPOOL){
-            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
-            image output = get_maxpool_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }else if(net.types[i] == NORMALIZATION){
-            normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
-            image output = get_normalization_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
+    //if(w == net->w && h == net->h) return 0;
+    net->w = w;
+    net->h = h;
+    int inputs = 0;
+    size_t workspace_size = 0;
+    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    //fflush(stderr);
+    for (i = 0; i < net->n; ++i){
+        layer l = net->layers[i];
+        if(l.type == CONVOLUTIONAL){
+            resize_convolutional_layer(&l, w, h);
+        }else if(l.type == CROP){
+            resize_crop_layer(&l, w, h);
+        }else if(l.type == MAXPOOL){
+            resize_maxpool_layer(&l, w, h);
+        }else if(l.type == AVGPOOL){
+            resize_avgpool_layer(&l, w, h);
+        }else if(l.type == NORMALIZATION){
+            resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
         }else{
             error("Cannot resize this type of layer");
         }
+        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
+        inputs = l.outputs;
+        net->layers[i] = l;
+        w = l.out_w;
+        h = l.out_h;
+        if(l.type == AVGPOOL) break;
     }
+#ifdef GPU
+        cuda_free(net->workspace);
+        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+        free(net->workspace);
+        net->workspace = calloc(1, workspace_size);
+#endif
+    //fprintf(stderr, " Done!\n");
     return 0;
 }
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
-    return get_network_output_size_layer(net, i);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].outputs;
 }
 
 int get_network_input_size(network net)
 {
-    return get_network_output_size_layer(net, 0);
+    return net.layers[0].inputs;
+}
+
+detection_layer get_network_detection_layer(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == DETECTION){
+            return net.layers[i];
+        }
+    }
+    fprintf(stderr, "Detection layer not found!!\n");
+    detection_layer l = {0};
+    return l;
 }
 
 image get_network_image_layer(network net, int i)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return get_convolutional_image(layer);
+    layer l = net.layers[i];
+    if (l.out_w && l.out_h && l.out_c){
+        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return get_maxpool_image(layer);
-    }
-    else if(net.types[i] == NORMALIZATION){
-        normalization_layer layer = *(normalization_layer *)net.layers[i];
-        return get_normalization_image(layer);
-    }
-    return make_empty_image(0,0,0);
+    image def = {0};
+    return def;
 }
 
 image get_network_image(network net)
@@ -475,7 +488,8 @@
         image m = get_network_image_layer(net, i);
         if(m.h != 0) return m;
     }
-    return make_empty_image(0,0,0);
+    image def = {0};
+    return def;
 }
 
 void visualize_network(network net)
@@ -485,35 +499,84 @@
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            prev = visualize_convolutional_layer(layer, buff, prev);
-        }
-        if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            visualize_normalization_layer(layer, buff);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            prev = visualize_convolutional_layer(l, buff, prev);
         }
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+#ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+#endif
+
+    network_state state;
+    state.net = net;
+    state.index = 0;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
     float *out = get_network_output(net);
     return out;
 }
 
-matrix network_predict_data(network net, data test)
+matrix network_predict_data_multi(network net, data test, int n)
 {
-    int i,j;
+    int i,j,b,m;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    for(i = 0; i < test.X.rows; ++i){
-        float *out = network_predict(net, test.X.vals[i]);
-        for(j = 0; j < k; ++j){
-            pred.vals[i][j] = out[j];
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
         }
     }
+    free(X);
+    return pred;   
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
     return pred;   
 }
 
@@ -521,30 +584,9 @@
 {
     int i,j;
     for(i = 0; i < net.n; ++i){
-        float *output = 0;
-        int n = 0;
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            output = layer.output;
-            image m = get_convolutional_image(layer);
-            n = m.h*m.w*m.c;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            output = layer.output;
-            image m = get_maxpool_image(layer);
-            n = m.h*m.w*m.c;
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            output = layer.output;
-            n = layer.outputs;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            output = layer.output;
-            n = layer.inputs;
-        }
+        layer l = net.layers[i];
+        float *output = l.output;
+        int n = l.outputs;
         float mean = mean_array(output, n);
         float vari = variance_array(output, n);
         fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
@@ -555,12 +597,69 @@
     }
 }
 
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
 float network_accuracy(network net, data d)
 {
     matrix guess = network_predict_data(net, d);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+float *network_accuracies(network net, data d, int n)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
     free_matrix(guess);
     return acc;
 }
 
 
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+void free_network(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+    #ifdef GPU
+    if(*net.input_gpu) cuda_free(*net.input_gpu);
+    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if(net.input_gpu) free(net.input_gpu);
+    if(net.truth_gpu) free(net.truth_gpu);
+    #endif
+}

--
Gitblit v1.10.0