From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/softmax_layer_kernels.cu |   30 ++++++++++++++----------------
 1 files changed, 14 insertions(+), 16 deletions(-)

diff --git a/src/softmax_layer_kernels.cu b/src/softmax_layer_kernels.cu
index 61dc607..8feaf89 100644
--- a/src/softmax_layer_kernels.cu
+++ b/src/softmax_layer_kernels.cu
@@ -1,12 +1,14 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
 extern "C" {
 #include "softmax_layer.h"
 #include "cuda.h"
 #include "blas.h"
 }
 
-#define BLOCK 256
-
-__global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float *output)
+__global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float temp, float *output)
 {
     int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if(b >= batch) return;
@@ -19,11 +21,11 @@
         largest = (val>largest) ? val : largest;
     }
     for(i = 0; i < n; ++i){
-        sum += exp(input[i+b*n]-largest);
+        sum += exp(input[i+b*n]/temp-largest/temp);
     }
-    sum = (sum != 0) ? largest+log(sum) : largest-100;
+    sum = (sum != 0) ? largest/temp+log(sum) : largest-100;
     for(i = 0; i < n; ++i){
-        output[i+b*n] = exp(input[i+b*n]-sum);
+        output[i+b*n] = exp(input[i+b*n]/temp-sum);
     }
 }
 
@@ -32,21 +34,17 @@
     cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
 }
 
-extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input)
+extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, network_state state)
 {
-    forward_softmax_layer_kernel<<<cuda_gridsize(layer.batch), BLOCK>>>(layer.inputs, layer.batch, input, layer.output_gpu);
+    int inputs = layer.inputs / layer.groups;
+    int batch = layer.batch * layer.groups;
+    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.temperature, layer.output_gpu);
     check_error(cudaPeekAtLastError());
-
-    /*
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
-    int z;
-    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
-    */
 }
 
-extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, float *delta)
+extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
+    axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1);
 }
 
 /* This is if you want softmax w/o log-loss classification. You probably don't.

--
Gitblit v1.10.0