From ae43c2bc32fbb838bfebeeaf2c2b058ccab5c83c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@burninator.cs.washington.edu>
Date: Thu, 23 Jun 2016 05:31:14 +0000
Subject: [PATCH] hi

---
 src/swag.c |  330 ------------------------------------------------------
 1 files changed, 4 insertions(+), 326 deletions(-)

diff --git a/src/swag.c b/src/swag.c
index 8c9ce3c..f06db4c 100644
--- a/src/swag.c
+++ b/src/swag.c
@@ -1,5 +1,4 @@
 #include "network.h"
-#include "region_layer.h"
 #include "detection_layer.h"
 #include "cost_layer.h"
 #include "utils.h"
@@ -10,49 +9,9 @@
 #include "opencv2/highgui/highgui_c.h"
 #endif
 
-char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-
-void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh)
-{
-    int classes = 20;
-    int i,n;
-
-    for(i = 0; i < side*side; ++i){
-        int row = i / side;
-        int col = i % side;
-        for(n = 0; n < num; ++n){
-            int p_index = side*side*classes + i*num + n;
-            int box_index = side*side*(classes + num) + (i*num + n)*4;
-            int class_index = i*classes;
-            float scale = predictions[p_index];
-            int class = max_index(predictions+class_index, classes);
-            float prob = scale * predictions[class_index + class];
-            if(prob > thresh){
-                int width = sqrt(prob)*5 + 1;
-                printf("%f %s\n", prob, voc_names[class]);
-                float red = get_color(0,class,classes);
-                float green = get_color(1,class,classes);
-                float blue = get_color(2,class,classes);
-                box b = float_to_box(predictions+box_index);
-                b.x = (b.x + col)/side;
-                b.y = (b.y + row)/side;
-                b.w = b.w*b.w;
-                b.h = b.h*b.h;
-
-                int left  = (b.x-b.w/2)*im.w;
-                int right = (b.x+b.w/2)*im.w;
-                int top   = (b.y-b.h/2)*im.h;
-                int bot   = (b.y+b.h/2)*im.h;
-                draw_box_width(im, left, top, right, bot, width, red, green, blue);
-            }
-        }
-    }
-    show_image(im, label);
-}
-
 void train_swag(char *cfgfile, char *weightfile)
 {
-    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+    char *train_images = "data/voc.0712.trainval";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
     data_seed = time(0);
@@ -68,7 +27,6 @@
     int i = *net.seen/imgs;
     data train, buffer;
 
-
     layer l = net.layers[net.n - 1];
 
     int side = l.side;
@@ -103,21 +61,13 @@
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-        /*
-           image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
-           image copy = copy_image(im);
-           draw_swag(copy, train.y.vals[113], 7, "truth");
-           cvWaitKey(0);
-           free_image(copy);
-         */
-
         time=clock();
         float loss = train_network(net, train);
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%1000==0){
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0 || i == 600){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
@@ -129,276 +79,8 @@
     save_weights(net, buff);
 }
 
-void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
-    int i,j,n;
-    //int per_cell = 5*num+classes;
-    for (i = 0; i < side*side; ++i){
-        int row = i / side;
-        int col = i % side;
-        for(n = 0; n < num; ++n){
-            int index = i*num + n;
-            int p_index = side*side*classes + i*num + n;
-            float scale = predictions[p_index];
-            int box_index = side*side*(classes + num) + (i*num + n)*4;
-            boxes[index].x = (predictions[box_index + 0] + col) / side * w;
-            boxes[index].y = (predictions[box_index + 1] + row) / side * h;
-            boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
-            boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
-            for(j = 0; j < classes; ++j){
-                int class_index = i*classes;
-                float prob = scale*predictions[class_index+j];
-                probs[index][j] = (prob > thresh) ? prob : 0;
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
-        }
-    }
-}
-
-void print_swag_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
-{
-    int i, j;
-    for(i = 0; i < total; ++i){
-        float xmin = boxes[i].x - boxes[i].w/2.;
-        float xmax = boxes[i].x + boxes[i].w/2.;
-        float ymin = boxes[i].y - boxes[i].h/2.;
-        float ymax = boxes[i].y + boxes[i].h/2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        for(j = 0; j < classes; ++j){
-            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
-                    xmin, ymin, xmax, ymax);
-        }
-    }
-}
-
-void validate_swag(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    char *base = "results/comp4_det_test_";
-    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n-1];
-    int classes = l.classes;
-    int square = l.sqrt;
-    int side = l.side;
-
-    int j;
-    FILE **fps = calloc(classes, sizeof(FILE *));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
-        fps[j] = fopen(buff, "w");
-    }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
-
-    int m = plist->size;
-    int i=0;
-    int t;
-
-    float thresh = .001;
-    int nms = 1;
-    float iou_thresh = .5;
-
-    int nthreads = 8;
-    image *val = calloc(nthreads, sizeof(image));
-    image *val_resized = calloc(nthreads, sizeof(image));
-    image *buf = calloc(nthreads, sizeof(image));
-    image *buf_resized = calloc(nthreads, sizeof(image));
-    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
-
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.type = IMAGE_DATA;
-
-    for(t = 0; t < nthreads; ++t){
-        args.path = paths[i+t];
-        args.im = &buf[t];
-        args.resized = &buf_resized[t];
-        thr[t] = load_data_in_thread(args);
-    }
-    time_t start = time(0);
-    for(i = nthreads; i < m+nthreads; i += nthreads){
-        fprintf(stderr, "%d\n", i);
-        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
-            pthread_join(thr[t], 0);
-            val[t] = buf[t];
-            val_resized[t] = buf_resized[t];
-        }
-        for(t = 0; t < nthreads && i+t < m; ++t){
-            args.path = paths[i+t];
-            args.im = &buf[t];
-            args.resized = &buf_resized[t];
-            thr[t] = load_data_in_thread(args);
-        }
-        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
-            char *path = paths[i+t-nthreads];
-            char *id = basecfg(path);
-            float *X = val_resized[t].data;
-            float *predictions = network_predict(net, X);
-            int w = val[t].w;
-            int h = val[t].h;
-            convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
-            if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
-            print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
-            free(id);
-            free_image(val[t]);
-            free_image(val_resized[t]);
-        }
-    }
-    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
-}
-
-void validate_swag_recall(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    char *base = "results/comp4_det_test_";
-    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n-1];
-    int classes = l.classes;
-    int square = l.sqrt;
-    int side = l.side;
-
-    int j, k;
-    FILE **fps = calloc(classes, sizeof(FILE *));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
-        fps[j] = fopen(buff, "w");
-    }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
-
-    int m = plist->size;
-    int i=0;
-
-    float thresh = .001;
-    int nms = 0;
-    float iou_thresh = .5;
-    float nms_thresh = .5;
-
-    int total = 0;
-    int correct = 0;
-    int proposals = 0;
-    float avg_iou = 0;
-
-    for(i = 0; i < m; ++i){
-        char *path = paths[i];
-        image orig = load_image_color(path, 0, 0);
-        image sized = resize_image(orig, net.w, net.h);
-        char *id = basecfg(path);
-        float *predictions = network_predict(net, sized.data);
-        int w = orig.w;
-        int h = orig.h;
-        convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
-        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
-
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        for(k = 0; k < side*side*l.n; ++k){
-            if(probs[k][0] > thresh){
-                ++proposals;
-            }
-        }
-        for (j = 0; j < num_labels; ++j) {
-            ++total;
-            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
-            float best_iou = 0;
-            for(k = 0; k < side*side*l.n; ++k){
-                float iou = box_iou(boxes[k], t);
-                if(probs[k][0] > thresh && iou > best_iou){
-                    best_iou = iou;
-                }
-            }
-            avg_iou += best_iou;
-            if(best_iou > iou_thresh){
-                ++correct;
-            }
-        }
-
-        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
-        free(id);
-        free_image(orig);
-        free_image(sized);
-    }
-}
-
-void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
-{
-
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    region_layer layer = net.layers[net.n-1];
-    set_batch_network(&net, 1);
-    srand(2222222);
-    clock_t time;
-    char buff[256];
-    char *input = buff;
-    while(1){
-        if(filename){
-            strncpy(input, filename, 256);
-        } else {
-            printf("Enter Image Path: ");
-            fflush(stdout);
-            input = fgets(input, 256, stdin);
-            if(!input) return;
-            strtok(input, "\n");
-        }
-        image im = load_image_color(input,0,0);
-        image sized = resize_image(im, net.w, net.h);
-        float *X = sized.data;
-        time=clock();
-        float *predictions = network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
-        show_image(sized, "resized");
-        free_image(im);
-        free_image(sized);
-#ifdef OPENCV
-        cvWaitKey(0);
-        cvDestroyAllWindows();
-#endif
-        if (filename) break;
-    }
-}
-
 void run_swag(int argc, char **argv)
 {
-    float thresh = find_float_arg(argc, argv, "-thresh", .2);
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -406,9 +88,5 @@
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    char *filename = (argc > 5) ? argv[5]: 0;
-    if(0==strcmp(argv[2], "test")) test_swag(cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
-    else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
+    if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
 }

--
Gitblit v1.10.0