From aebe937710ced03d03f73ab23f410f29685655c1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Aug 2016 18:54:24 +0000
Subject: [PATCH] what do you even write here?

---
 src/classifier.c |  137 +++++++++++++++++++++++++++++++++++----------
 1 files changed, 107 insertions(+), 30 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index 7060c5e..ee6d212 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -3,6 +3,7 @@
 #include "parser.h"
 #include "option_list.h"
 #include "blas.h"
+#include "assert.h"
 #include "classifier.h"
 #include <sys/time.h>
 
@@ -38,8 +39,11 @@
     return options;
 }
 
-void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
 {
+    int nthreads = 8;
+    int i;
+
     data_seed = time(0);
     srand(time(0));
     float avg_loss = -1;
@@ -49,8 +53,10 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    if(clear) *net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch;
+    int imgs = net.batch*net.subdivisions/nthreads;
+    assert(net.batch*net.subdivisions % nthreads == 0);
 
     list *options = read_data_cfg(datacfg);
 
@@ -65,9 +71,10 @@
     printf("%d\n", plist->size);
     int N = plist->size;
     clock_t time;
-    pthread_t load_thread;
-    data train;
-    data buffer;
+
+    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
+    data *trains  = calloc(nthreads, sizeof(data));
+    data *buffers = calloc(nthreads, sizeof(data));
 
     load_args args = {0};
     args.w = net.w;
@@ -75,6 +82,9 @@
 
     args.min = net.min_crop;
     args.max = net.max_crop;
+    args.angle = net.angle;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
     args.size = net.w;
 
     args.paths = paths;
@@ -82,41 +92,54 @@
     args.n = imgs;
     args.m = N;
     args.labels = labels;
-    args.d = &buffer;
     args.type = CLASSIFICATION_DATA;
 
-    load_thread = load_data_in_thread(args);
+    for(i = 0; i < nthreads; ++i){
+        args.d = buffers + i;
+        load_threads[i] = load_data_in_thread(args);
+    }
+
     int epoch = (*net.seen)/N;
     while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
+        for(i = 0; i < nthreads; ++i){
+            pthread_join(load_threads[i], 0);
+            trains[i] = buffers[i];
+        }
+        data train = concat_datas(trains, nthreads);
 
-        load_thread = load_data_in_thread(args);
+        for(i = 0; i < nthreads; ++i){
+            args.d = buffers + i;
+            load_threads[i] = load_data_in_thread(args);
+        }
+
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
-/*
-        int u;
-        for(u = 0; u < net.batch; ++u){
-            image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
-            show_image(im, "loaded");
-            cvWaitKey(0);
+        if(0){
+            int u;
+            for(u = 0; u < imgs; ++u){
+                image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+                show_image(im, "loaded");
+                cvWaitKey(0);
+            }
         }
-        */
 
         float loss = train_network(net, train);
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         free_data(train);
+        for(i = 0; i < nthreads; ++i){
+            free_data(trains[i]);
+        }
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
-        if(*net.seen%100 == 0){
+        if(get_current_batch(net)%100 == 0){
             char buff[256];
             sprintf(buff, "%s/%s.backup",backup_directory,base);
             save_weights(net, buff);
@@ -126,8 +149,14 @@
     sprintf(buff, "%s/%s.weights", backup_directory, base);
     save_weights(net, buff);
 
-    pthread_join(load_thread, 0);
-    free_data(buffer);
+    for(i = 0; i < nthreads; ++i){
+        pthread_join(load_threads[i], 0);
+        free_data(buffers[i]);
+    }
+    free(buffers);
+    free(trains);
+    free(load_threads);
+
     free_network(net);
     free_ptrs((void**)labels, classes);
     free_ptrs((void**)paths, plist->size);
@@ -135,7 +164,7 @@
     free(base);
 }
 
-void validate_classifier(char *datacfg, char *filename, char *weightfile)
+void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
 {
     int i = 0;
     network net = parse_network_cfg(filename);
@@ -337,10 +366,10 @@
 {
     int i, j;
     network net = parse_network_cfg(filename);
-    set_batch_network(&net, 1);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    set_batch_network(&net, 1);
     srand(time(0));
 
     list *options = read_data_cfg(datacfg);
@@ -378,8 +407,8 @@
         //cvWaitKey(0);
         float *pred = network_predict(net, crop.data);
 
+        if(resized.data != im.data) free_image(resized);
         free_image(im);
-        free_image(resized);
         free_image(crop);
         top_k(pred, classes, topk, indexes);
 
@@ -441,7 +470,7 @@
             flip_image(r);
             p = network_predict(net, r.data);
             axpy_cpu(classes, 1, p, 1, pred, 1);
-            free_image(r);
+            if(r.data != im.data) free_image(r);
         }
         free_image(im);
         top_k(pred, classes, topk, indexes);
@@ -476,6 +505,7 @@
     int *indexes = calloc(top, sizeof(int));
     char buff[256];
     char *input = buff;
+    int size = net.w;
     while(1){
         if(filename){
             strncpy(input, filename, 256);
@@ -486,8 +516,12 @@
             if(!input) return;
             strtok(input, "\n");
         }
-        image im = load_image_color(input, net.w, net.h);
-        float *X = im.data;
+        image im = load_image_color(input, 0, 0);
+        image r = resize_min(im, size);
+        resize_network(&net, r.w, r.h);
+        printf("%d %d\n", r.w, r.h);
+
+        float *X = r.data;
         time=clock();
         float *predictions = network_predict(net, X);
         top_predictions(net, top, indexes);
@@ -496,11 +530,52 @@
             int index = indexes[i];
             printf("%s: %f\n", names[index], predictions[index]);
         }
+        if(r.data != im.data) free_image(r);
         free_image(im);
         if (filename) break;
     }
 }
 
+
+void label_classifier(char *datacfg, char *filename, char *weightfile)
+{
+    int i;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "names", "data/labels.list");
+    char *test_list = option_find_str(options, "test", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(test_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    for(i = 0; i < m; ++i){
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        float *pred = network_predict(net, crop.data);
+
+        if(resized.data != im.data) free_image(resized);
+        free_image(im);
+        free_image(crop);
+        int ind = max_index(pred, classes);
+
+        printf("%s\n", labels[ind]);
+    }
+}
+
+
 void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
 {
     int curr = 0;
@@ -649,6 +724,7 @@
     }
 
     int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
@@ -656,13 +732,14 @@
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
-    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
     else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
-    else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
-    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
     else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
-    else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights);
     else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
 }
 

--
Gitblit v1.10.0