From aebe937710ced03d03f73ab23f410f29685655c1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Aug 2016 18:54:24 +0000
Subject: [PATCH] what do you even write here?

---
 src/network_kernels.cu |  100 ++++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 97 insertions(+), 3 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 0b50647..3e01019 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -11,17 +11,23 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
-#include "params.h"
 #include "parser.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "rnn_layer.h"
+#include "gru_layer.h"
+#include "crnn_layer.h"
 #include "detection_layer.h"
+#include "region_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "cost_layer.h"
 #include "local_layer.h"
 #include "softmax_layer.h"
@@ -37,6 +43,7 @@
 
 void forward_network_gpu(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
         state.index = i;
@@ -48,12 +55,22 @@
             forward_convolutional_layer_gpu(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == ACTIVE){
+            forward_activation_layer_gpu(l, state);
         } else if(l.type == LOCAL){
             forward_local_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer_gpu(l, state);
+        } else if(l.type == REGION){
+            forward_region_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer_gpu(l, state);
+        } else if(l.type == RNN){
+            forward_rnn_layer_gpu(l, state);
+        } else if(l.type == GRU){
+            forward_gru_layer_gpu(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer_gpu(l, state);
         } else if(l.type == CROP){
             forward_crop_layer_gpu(l, state);
         } else if(l.type == COST){
@@ -62,8 +79,12 @@
             forward_softmax_layer_gpu(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer_gpu(l, state);
+        } else if(l.type == BATCHNORM){
+            forward_batchnorm_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            forward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             forward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
@@ -79,6 +100,7 @@
 
 void backward_network_gpu(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     float * original_input = state.input;
     float * original_delta = state.delta;
@@ -97,22 +119,36 @@
             backward_convolutional_layer_gpu(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             backward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == ACTIVE){
+            backward_activation_layer_gpu(l, state);
         } else if(l.type == LOCAL){
             backward_local_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            backward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             if(i != 0) backward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
             backward_dropout_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer_gpu(l, state);
+        } else if(l.type == REGION){
+            backward_region_layer_gpu(l, state);
         } else if(l.type == NORMALIZATION){
             backward_normalization_layer_gpu(l, state);
+        } else if(l.type == BATCHNORM){
+            backward_batchnorm_layer_gpu(l, state);
         } else if(l.type == SOFTMAX){
             if(i != 0) backward_softmax_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
             backward_connected_layer_gpu(l, state);
+        } else if(l.type == RNN){
+            backward_rnn_layer_gpu(l, state);
+        } else if(l.type == GRU){
+            backward_gru_layer_gpu(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer_gpu(l, state);
         } else if(l.type == COST){
             backward_cost_layer_gpu(l, state);
         } else if(l.type == ROUTE){
@@ -136,20 +172,26 @@
             update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
             update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == GRU){
+            update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == RNN){
+            update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == LOCAL){
             update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
-float train_network_datum_gpu(network net, float *x, float *y)
+void forward_backward_network_gpu(network net, float *x, float *y)
 {
     network_state state;
     state.index = 0;
     state.net = net;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
-    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
+    if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
     if(!*net.input_gpu){
         *net.input_gpu = cuda_make_array(x, x_size);
         *net.truth_gpu = cuda_make_array(y, y_size);
@@ -163,12 +205,64 @@
     state.train = 1;
     forward_network_gpu(net, state);
     backward_network_gpu(net, state);
+}
+
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    forward_backward_network_gpu(net, x, y);
     float error = get_network_cost(net);
     if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
 
     return error;
 }
 
+typedef struct {
+    network net;
+    float *X;
+    float *y;
+} train_args;
+
+void *train_thread(void *ptr)
+{
+    train_args args = *(train_args*)ptr;
+
+    cudaError_t status = cudaSetDevice(args.net.gpu_index);
+    check_error(status);
+    forward_backward_network_gpu(args.net, args.X, args.y);
+    free(ptr);
+    return 0;
+}
+
+pthread_t train_network_in_thread(train_args args)
+{
+    pthread_t thread;
+    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
+    *ptr = args;
+    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+float train_networks(network *nets, int n, data d)
+{
+    int batch = nets[0].batch;
+    float **X = (float **) calloc(n, sizeof(float *));
+    float **y = (float **) calloc(n, sizeof(float *));
+    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
+        y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
+        get_next_batch(d, batch, i*batch, X[i], y[i]);
+        float err = train_network_datum(nets[i], X[i], y[i]);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
 float *get_network_output_layer_gpu(network net, int i)
 {
     layer l = net.layers[i];

--
Gitblit v1.10.0