From af4e4f92dc9e5da160eb6c6870a7b38b863f1c6c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 28 Oct 2014 02:45:06 +0000
Subject: [PATCH] getting rid of sub_arrays, nvidia driver memory leak

---
 src/network.c             |   22 +
 src/gemm.cl               |  179 ++++++++++++++++
 src/network.h             |    1 
 Makefile                  |    4 
 src/data.c                |   13 +
 src/gemm.c                |   69 +-----
 src/cnn.c                 |  157 ++++++++++----
 src/data.h                |    3 
 /dev/null                 |  162 --------------
 src/convolutional_layer.c |   25 -
 src/mini_blas.h           |    6 
 src/opencl.c              |    5 
 src/utils.c               |    7 
 13 files changed, 361 insertions(+), 292 deletions(-)

diff --git a/Makefile b/Makefile
index 29dccbb..b5ad1eb 100644
--- a/Makefile
+++ b/Makefile
@@ -1,6 +1,6 @@
 CC=gcc
 GPU=1
-COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/ -I/usr/local/clblas/include/
+COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
 ifeq ($(GPU), 1) 
 COMMON+=-DGPU
 else
@@ -15,7 +15,7 @@
 else
 OPTS+= -march=native
 ifeq ($(GPU), 1)
-LDFLAGS= -lOpenCL -lclBLAS
+LDFLAGS= -lOpenCL
 endif
 endif
 CFLAGS= $(COMMON) $(OPTS)
diff --git a/src/cnn.c b/src/cnn.c
index 2d09582..9e9e62b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -308,15 +308,15 @@
 
 void train_imagenet()
 {
-	network net = parse_network_cfg("cfg/imagenet_backup_710.cfg");
+	network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_870.cfg");
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1000/net.batch+1;
-    //imgs=1;
-	srand(888888);
+	srand(986987);
 	int i = 0;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
-    list *plist = get_paths("/home/pjreddie/data/imagenet/cls.cropped.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
     clock_t time;
 	while(1){
 		i += 1;
@@ -326,29 +326,58 @@
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         #ifdef GPU
-		float loss = train_network_sgd_gpu(net, train, imgs);
+		float loss = train_network_data_gpu(net, train, imgs);
 		printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
         #endif
 		free_data(train);
 		if(i%10==0){
 			char buff[256];
-			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_%d.cfg", i);
+			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_larger_%d.cfg", i);
 			save_network(net, buff);
 		}
 	}
 }
 
+void train_imagenet_small()
+{
+	network net = parse_network_cfg("cfg/imagenet_small.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs=1;
+    srand(111222);
+    int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+
+    i += 1;
+    time=clock();
+    data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+    normalize_data_rows(train);
+    printf("Loaded: %lf seconds\n", sec(clock()-time));
+    time=clock();
+#ifdef GPU
+    float loss = train_network_data_gpu(net, train, imgs);
+    printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
+#endif
+    free_data(train);
+    char buff[256];
+    sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i);
+    save_network(net, buff);
+}
+
 void test_imagenet()
 {
-	network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    network net = parse_network_cfg("cfg/imagenet_test.cfg");
     //imgs=1;
-	srand(2222222);
-	int i = 0;
+    srand(2222222);
+    int i = 0;
     char **names = get_labels("cfg/shortnames.txt");
     clock_t time;
     char filename[256];
     int indexes[10];
-	while(1){
+    while(1){
         gets(filename);
         image im = load_image_color(filename, 256, 256);
         normalize_image(im);
@@ -357,56 +386,55 @@
         time=clock();
         float *predictions = network_predict(net, X);
         top_predictions(net, 10, indexes);
-		printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
         for(i = 0; i < 10; ++i){
             int index = indexes[i];
             printf("%s: %f\n", names[index], predictions[index]);
         }
-		free_image(im);
-	}
+        free_image(im);
+    }
 }
 
 void test_visualize()
 {
-	network net = parse_network_cfg("cfg/assira_backup_740000.cfg");
-	srand(2222222);
-	visualize_network(net);
-	cvWaitKey(0);
+    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    visualize_network(net);
+    cvWaitKey(0);
 }
 void test_full()
 {
-	network net = parse_network_cfg("cfg/backup_1300.cfg");
-	srand(2222222);
-	int i,j;
-	int total = 100;
-	char *labels[] = {"cat","dog"};
-	FILE *fp = fopen("preds.txt","w");
-	for(i = 0; i < total; ++i){
-		visualize_network(net);
-		cvWaitKey(100);
-		data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256);
-		image im = float_to_image(256, 256, 3,test.X.vals[0]);
-		show_image(im, "input");
-		cvWaitKey(100);
-		normalize_data_rows(test);
-		for(j = 0; j < test.X.rows; ++j){
-			float *x = test.X.vals[j];
-			forward_network(net, x, 0, 0);
-			int class = get_predicted_class_network(net);
-			fprintf(fp, "%d\n", class);
-		}
-		free_data(test);
-	}
-	fclose(fp);
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x, 0, 0);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
 }
 
 void test_cifar10()
 {
     network net = parse_network_cfg("cfg/cifar10_part5.cfg");
     data test = load_cifar10_data("data/cifar10/test_batch.bin");
-        clock_t start = clock(), end;
+    clock_t start = clock(), end;
     float test_acc = network_accuracy(net, test);
-        end = clock();
+    end = clock();
     printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
     visualize_network(net);
     cvWaitKey(0);
@@ -499,7 +527,7 @@
     int iters = 10000/net.batch;
     while(++count <= 2000){
         clock_t start = clock(), end;
-        float loss = train_network_sgd_gpu(net, train, iters);
+        float loss = train_network_sgd(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
         //float test_acc = 0;
@@ -954,12 +982,51 @@
     cvWaitKey(0);
 }
 
+void test_gpu_net()
+{
+    srand(222222);
+    network net = parse_network_cfg("cfg/nist.cfg");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(train, -144);
+    translate_data_rows(test, -144);
+    int count = 0;
+    int iters = 10000/net.batch;
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+    count = 0;
+    srand(222222);
+    net = parse_network_cfg("cfg/nist.cfg");
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd_gpu(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+}
+
 
 int main(int argc, char *argv[])
 {
-    test_gpu_blas();
-    //train_imagenet();
+    if(argc != 2){
+        fprintf(stderr, "usage: %s <function>\n", argv[0]);
+        return 0;
+    }
+    if(0==strcmp(argv[1], "train")) train_imagenet();
+    else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
+    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
+    else if(0==strcmp(argv[1], "test")) test_gpu_net();
+    //test_gpu_blas();
+    //train_imagenet_small();
+    //test_imagenet();
     //train_nist();
+    //test_visualize();
     fprintf(stderr, "Success!\n");
     return 0;
 }
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 1587ae8..42f4f21 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -369,11 +369,9 @@
 
     for(i = 0; i < layer.batch; ++i){
         cl_mem a = layer.filters_cl;
-        cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
-        cl_mem c = cl_sub_array(layer.output_cl, i*m*n, m*n);
-        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c,n);
-        clReleaseMemObject(b);
-        clReleaseMemObject(c);
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.output_cl;
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
     }
     #ifdef TIMEIT
     clFinish(cl.queue);
@@ -396,14 +394,11 @@
     learn_bias_convolutional_layer_ongpu(layer);
 
     for(i = 0; i < layer.batch; ++i){
-        cl_mem a = cl_sub_array(layer.delta_cl,i*m*k, m*k);
-        cl_mem b = cl_sub_array(layer.col_image_cl,i*k*n, k*n);
+        cl_mem a = layer.delta_cl;
+        cl_mem b = layer.col_image_cl;
         cl_mem c = layer.filter_updates_cl;
 
-        gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
-
-        clReleaseMemObject(a);
-        clReleaseMemObject(b);
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
     }
     //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
 
@@ -415,12 +410,10 @@
 
         for(i = 0; i < layer.batch; ++i){
             cl_mem a = layer.filters_cl;
-            cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
-            cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
+            cl_mem b = layer.delta_cl;
+            cl_mem c = layer.col_image_cl;
 
-            gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            clReleaseMemObject(b);
-            clReleaseMemObject(c);
+            gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
         }
 
         scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
diff --git a/src/data.c b/src/data.c
index 734fffa..b31a5aa 100644
--- a/src/data.c
+++ b/src/data.c
@@ -172,7 +172,7 @@
     return d;
 }
 
-void get_batch(data d, int n, float *X, float *y)
+void get_random_batch(data d, int n, float *X, float *y)
 {
     int j;
     for(j = 0; j < n; ++j){
@@ -182,6 +182,17 @@
     }
 }
 
+void get_next_batch(data d, int n, int offset, float *X, float *y)
+{
+    int j;
+    for(j = 0; j < n; ++j){
+        int index = offset + j;
+        memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
+        memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
+    }
+}
+
+
 data load_all_cifar10()
 {
     data d;
diff --git a/src/data.h b/src/data.h
index eefef8b..84b2f17 100644
--- a/src/data.h
+++ b/src/data.h
@@ -22,7 +22,8 @@
 data load_all_cifar10();
 list *get_paths(char *filename);
 char **get_labels(char *filename);
-void get_batch(data d, int n, float *X, float *y);
+void get_random_batch(data d, int n, float *X, float *y);
+void get_next_batch(data d, int n, int offset, float *X, float *y);
 data load_categorical_data_csv(char *filename, int target, int k);
 void normalize_data_rows(data d);
 void scale_data_rows(data d, float s);
diff --git a/src/gemm.c b/src/gemm.c
index 63c2950..cc882d5 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -104,7 +104,7 @@
 
 #include "opencl.h"
 #include <math.h>
-#include <clBLAS.h>
+//#include <clBLAS.h>
 
 #define STR_HELPER(x) #x
 #define STR(x) STR_HELPER(x)
@@ -131,7 +131,7 @@
     static int init = 0;
     static cl_kernel gemm_kernel;
     if(!init){
-        gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) );
+        gemm_kernel = get_kernel("src/gemm.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) );
         init = 1;
     }
     return gemm_kernel;
@@ -142,7 +142,7 @@
     static int init = 0;
     static cl_kernel gemm_kernel;
     if(!init){
-        gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) );
+        gemm_kernel = get_kernel("src/gemm.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) );
         init = 1;
     }
     return gemm_kernel;
@@ -153,23 +153,12 @@
     static int init = 0;
     static cl_kernel gemm_kernel;
     if(!init){
-        gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) );
+        gemm_kernel = get_kernel("src/gemm.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) );
         init = 1;
     }
     return gemm_kernel;
 }
 
-void gemm_ongpu_new(int TA, int TB, int M, int N, int K, float ALPHA, 
-        cl_mem A_gpu, int lda, 
-        cl_mem B_gpu, int ldb,
-        float BETA,
-        cl_mem C_gpu, int ldc);
-void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, 
-        cl_mem A_gpu, int lda, 
-        cl_mem B_gpu, int ldb,
-        float BETA,
-        cl_mem C_gpu, int ldc);
-
 void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, 
         cl_mem A_gpu, int lda, 
         cl_mem B_gpu, int ldb,
@@ -181,16 +170,16 @@
     cl_command_queue queue = cl.queue;
     cl_event event;
     cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
+    */
 
-*/
-    gemm_ongpu_new(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
+    gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
 }
 
-void gemm_ongpu_new(int TA, int TB, int M, int N, int K, float ALPHA, 
-        cl_mem A_gpu, int lda, 
-        cl_mem B_gpu, int ldb,
+void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA, 
+        cl_mem A_gpu, int a_off, int lda, 
+        cl_mem B_gpu, int b_off, int ldb,
         float BETA,
-        cl_mem C_gpu, int ldc)
+        cl_mem C_gpu, int c_off, int ldc)
 {
     //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
     cl_setup();
@@ -208,11 +197,14 @@
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off);
     cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
     check_error(cl);
 
@@ -223,41 +215,6 @@
     check_error(cl);
 }
 
-void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, 
-        cl_mem A_gpu, int lda, 
-        cl_mem B_gpu, int ldb,
-        float BETA,
-        cl_mem C_gpu, int ldc)
-{
-    //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
-    cl_setup();
-    cl_kernel gemm_kernel = get_gemm_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
-    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
-    check_error(cl);
-
-    const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK};
-    const size_t local_size[] = {BLOCK, BLOCK};
-
-    clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
-    check_error(cl);
-}
-
-
 void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, 
         float *A, int lda, 
         float *B, int ldb,
diff --git a/src/gemm.cl b/src/gemm.cl
index c5a0698..fb48082 100644
--- a/src/gemm.cl
+++ b/src/gemm.cl
@@ -1,10 +1,183 @@
+__kernel void gemm_tn(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    __global float *A, int a_off, int lda, 
+                    __global float *B, int b_off, int ldb,
+                    float BETA,
+                    __global float *C, int c_off, int ldc)
+{
+    A += a_off;
+    B += b_off;
+    C += c_off;
+    __local float Asub[BLOCK][BLOCK];
+    __local float Bsub[BLOCK][BLOCK];
+
+    int col = get_global_id(0);
+    int row = get_global_id(1);
+
+    int col_block = get_group_id(0);
+    int row_block = get_group_id(1);
+
+    col = (col < N) ? col : N - 1;
+    row = (row < M) ? row : M - 1;
+
+    int x = get_local_id(0);
+    int y = get_local_id(1);
+
+    int i,j;
+
+    float val = 0;
+    float orig = C[row*ldc + col];
+
+    for(i = 0; i < K; i += BLOCK){
+        
+        int arow = y + i;
+        int acol = x + row_block*BLOCK;
+
+        int brow = y + i;
+        int bcol = col;
+
+        arow = (arow < K) ? arow : K-1;
+        acol = (acol < M) ? acol : M-1;
+        brow = (brow < K) ? brow : K-1;
+        
+        int aind = arow*lda + acol;
+        int bind = brow*ldb + bcol;
+        
+        Asub[x][y] = A[aind];
+        Bsub[y][x] = B[bind];
+
+        barrier(CLK_LOCAL_MEM_FENCE);
+
+        for(j = 0; j < BLOCK && i+j<K; ++j){
+            val += Asub[y][j]*Bsub[j][x];
+        }
+        barrier(CLK_LOCAL_MEM_FENCE);
+    }
+
+    C[row*ldc+col] = ALPHA*val + BETA*orig;
+}
+
+__kernel void gemm_nt(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    __global float *A, int a_off, int lda, 
+                    __global float *B, int b_off, int ldb,
+                    float BETA,
+                    __global float *C, int c_off, int ldc)
+{
+    A += a_off;
+    B += b_off;
+    C += c_off;
+    __local float Asub[BLOCK][BLOCK];
+    __local float Bsub[BLOCK][BLOCK];
+
+    
+    int col = get_global_id(0);
+    int row = get_global_id(1);
+
+    int col_block = get_group_id(0);
+    int row_block = get_group_id(1);
+
+    col = (col < N) ? col : N - 1;
+    row = (row < M) ? row : M - 1;
+
+    int x = get_local_id(0);
+    int y = get_local_id(1);
+
+    int i,j;
+
+    float val = 0;
+    float orig = C[row*ldc + col];
+
+    for(i = 0; i < K; i += BLOCK){
+        
+        int arow = row;
+        int acol = x + i;
+
+        int brow = col_block*BLOCK + y;
+        int bcol = x + i;
+
+        brow = (brow < N) ? brow : N-1;
+        acol = (acol < K) ? acol : K-1;
+        bcol = (bcol < K) ? bcol : K-1;
+        
+        int aind = arow*lda + acol;
+        int bind = brow*ldb + bcol;
+        
+        Asub[y][x] = A[aind];
+        Bsub[x][y] = B[bind];
+
+        barrier(CLK_LOCAL_MEM_FENCE);
+
+        for(j = 0; j < BLOCK && i+j<K; ++j){
+            val += Asub[y][j]*Bsub[j][x];
+        }
+        barrier(CLK_LOCAL_MEM_FENCE);
+    }
+
+    C[row*ldc+col] = ALPHA*val + BETA*orig;
+}
+
+__kernel void gemm_nn(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    __global float *A, int a_off, int lda, 
+                    __global float *B, int b_off, int ldb,
+                    float BETA,
+                    __global float *C, int c_off, int ldc)
+{
+    A += a_off;
+    B += b_off;
+    C += c_off;
+    __local float Asub[BLOCK][BLOCK];
+    __local float Bsub[BLOCK][BLOCK];
+
+    int col = get_global_id(0);
+    int row = get_global_id(1);
+
+    col = (col < N) ? col : N - 1;
+    row = (row < M) ? row : M - 1;
+
+    int x = get_local_id(0);
+    int y = get_local_id(1);
+
+    int i,j;
+
+    float orig = C[row*ldc+col];
+    float val = 0;
+    
+    for(i = 0; i < K; i += BLOCK){
+        
+        int arow = row;
+        int acol = x + i;
+
+        int brow = y + i;
+        int bcol = col;
+
+        acol = (acol < K) ? acol : K-1;
+        brow = (brow < K) ? brow : K-1;
+        
+        int aind = arow*lda + acol;
+        int bind = brow*ldb + bcol;
+        
+        Asub[y][x] = A[aind];
+        Bsub[y][x] = B[bind];
+
+        barrier(CLK_LOCAL_MEM_FENCE);
+
+        for(j = 0; j < BLOCK && i+j<K; ++j){
+            val += Asub[y][j]*Bsub[j][x];
+        }
+        barrier(CLK_LOCAL_MEM_FENCE);
+    }
+
+    C[row*ldc+col] = ALPHA*val + BETA*orig;
+}
 
 __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
-                    __global float *A, int lda, 
-                    __global float *B, int ldb,
+                    __global float *A, int a_off, int lda, 
+                    __global float *B, int b_off, int ldb,
                     float BETA,
-                    __global float *C, int ldc)
+                    __global float *C, int c_off, int ldc)
 {
+    A += a_off;
+    B += b_off;
+    C += c_off;
     __local float Asub[BLOCK][BLOCK];
     __local float Bsub[BLOCK][BLOCK];
 
diff --git a/src/gemm_new.cl b/src/gemm_new.cl
deleted file mode 100644
index 110807a..0000000
--- a/src/gemm_new.cl
+++ /dev/null
@@ -1,162 +0,0 @@
-__kernel void gemm_tn(int TA, int TB, int M, int N, int K, float ALPHA, 
-                    __global float *A, int lda, 
-                    __global float *B, int ldb,
-                    float BETA,
-                    __global float *C, int ldc)
-{
-    __local float Asub[BLOCK][BLOCK];
-    __local float Bsub[BLOCK][BLOCK];
-
-    int col = get_global_id(0);
-    int row = get_global_id(1);
-
-    int col_block = get_group_id(0);
-    int row_block = get_group_id(1);
-
-    col = (col < N) ? col : N - 1;
-    row = (row < M) ? row : M - 1;
-
-    int x = get_local_id(0);
-    int y = get_local_id(1);
-
-    int i,j;
-
-    float val = 0;
-    float orig = C[row*ldc + col];
-
-    for(i = 0; i < K; i += BLOCK){
-        
-        int arow = y + i;
-        int acol = x + row_block*BLOCK;
-
-        int brow = y + i;
-        int bcol = col;
-
-        arow = (arow < K) ? arow : K-1;
-        acol = (acol < M) ? acol : M-1;
-        brow = (brow < K) ? brow : K-1;
-        
-        int aind = arow*lda + acol;
-        int bind = brow*ldb + bcol;
-        
-        Asub[x][y] = A[aind];
-        Bsub[y][x] = B[bind];
-
-        barrier(CLK_LOCAL_MEM_FENCE);
-
-        for(j = 0; j < BLOCK && i+j<K; ++j){
-            val += Asub[y][j]*Bsub[j][x];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-
-    C[row*ldc+col] = ALPHA*val + BETA*orig;
-}
-
-__kernel void gemm_nt(int TA, int TB, int M, int N, int K, float ALPHA, 
-                    __global float *A, int lda, 
-                    __global float *B, int ldb,
-                    float BETA,
-                    __global float *C, int ldc)
-{
-    __local float Asub[BLOCK][BLOCK];
-    __local float Bsub[BLOCK][BLOCK];
-
-    
-    int col = get_global_id(0);
-    int row = get_global_id(1);
-
-    int col_block = get_group_id(0);
-    int row_block = get_group_id(1);
-
-    col = (col < N) ? col : N - 1;
-    row = (row < M) ? row : M - 1;
-
-    int x = get_local_id(0);
-    int y = get_local_id(1);
-
-    int i,j;
-
-    float val = 0;
-    float orig = C[row*ldc + col];
-
-    for(i = 0; i < K; i += BLOCK){
-        
-        int arow = row;
-        int acol = x + i;
-
-        int brow = col_block*BLOCK + y;
-        int bcol = x + i;
-
-        brow = (brow < N) ? brow : N-1;
-        acol = (acol < K) ? acol : K-1;
-        bcol = (bcol < K) ? bcol : K-1;
-        
-        int aind = arow*lda + acol;
-        int bind = brow*ldb + bcol;
-        
-        Asub[y][x] = A[aind];
-        Bsub[x][y] = B[bind];
-
-        barrier(CLK_LOCAL_MEM_FENCE);
-
-        for(j = 0; j < BLOCK && i+j<K; ++j){
-            val += Asub[y][j]*Bsub[j][x];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-
-    C[row*ldc+col] = ALPHA*val + BETA*orig;
-}
-
-__kernel void gemm_nn(int TA, int TB, int M, int N, int K, float ALPHA, 
-                    __global float *A, int lda, 
-                    __global float *B, int ldb,
-                    float BETA,
-                    __global float *C, int ldc)
-{
-    __local float Asub[BLOCK][BLOCK];
-    __local float Bsub[BLOCK][BLOCK];
-
-    int col = get_global_id(0);
-    int row = get_global_id(1);
-
-    col = (col < N) ? col : N - 1;
-    row = (row < M) ? row : M - 1;
-
-    int x = get_local_id(0);
-    int y = get_local_id(1);
-
-    int i,j;
-
-    float orig = C[row*ldc+col];
-    float val = 0;
-    
-    for(i = 0; i < K; i += BLOCK){
-        
-        int arow = row;
-        int acol = x + i;
-
-        int brow = y + i;
-        int bcol = col;
-
-        acol = (acol < K) ? acol : K-1;
-        brow = (brow < K) ? brow : K-1;
-        
-        int aind = arow*lda + acol;
-        int bind = brow*ldb + bcol;
-        
-        Asub[y][x] = A[aind];
-        Bsub[y][x] = B[bind];
-
-        barrier(CLK_LOCAL_MEM_FENCE);
-
-        for(j = 0; j < BLOCK && i+j<K; ++j){
-            val += Asub[y][j]*Bsub[j][x];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-
-    C[row*ldc+col] = ALPHA*val + BETA*orig;
-}
-
diff --git a/src/mini_blas.h b/src/mini_blas.h
index 923afc7..5d5e715 100644
--- a/src/mini_blas.h
+++ b/src/mini_blas.h
@@ -28,6 +28,12 @@
          int channels, int height, int width,
          int ksize, int stride, int pad, float *data_col);
 
+void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA, 
+        cl_mem A_gpu, int a_off, int lda, 
+        cl_mem B_gpu, int b_off, int ldb,
+        float BETA,
+        cl_mem C_gpu, int c_off, int ldc);
+
 void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, 
         cl_mem A_gpu, int lda, 
         cl_mem B_gpu, int ldb,
diff --git a/src/network.c b/src/network.c
index 8167d85..69942e8 100644
--- a/src/network.c
+++ b/src/network.c
@@ -418,7 +418,25 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum_gpu(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network_data_gpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
         float err = train_network_datum_gpu(net, X, y);
         sum += err;
     }
@@ -449,7 +467,7 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
+        get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
     }
diff --git a/src/network.h b/src/network.h
index c95f6fa..7625904 100644
--- a/src/network.h
+++ b/src/network.h
@@ -42,6 +42,7 @@
 cl_mem get_network_output_cl_layer(network net, int i);
 cl_mem get_network_delta_cl_layer(network net, int i);
 float train_network_sgd_gpu(network net, data d, int n);
+float train_network_data_gpu(network net, data d, int n);
 #endif
 
 network make_network(int n, int batch);
diff --git a/src/opencl.c b/src/opencl.c
index 604a2e3..fc7310c 100644
--- a/src/opencl.c
+++ b/src/opencl.c
@@ -4,7 +4,7 @@
 #include <string.h>
 #include <time.h>
 #include <unistd.h>
-#include <clBLAS.h>
+//#include <clBLAS.h>
 
 #include "opencl.h"
 #include "utils.h"
@@ -99,7 +99,7 @@
         info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
         check_error(info);
     }
-    info.error = clblasSetup();
+    //info.error = clblasSetup();
     check_error(info);
     info.initialized = 1;
     return info;
@@ -141,6 +141,7 @@
 void cl_setup()
 {
 	if(!cl.initialized){
+        printf("initializing\n");
 		cl = cl_init();
 	}
 }
diff --git a/src/utils.c b/src/utils.c
index a883ad8..1afe048 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -71,7 +71,7 @@
 char *fgetl(FILE *fp)
 {
     if(feof(fp)) return 0;
-    int size = 512;
+    unsigned long size = 512;
     char *line = malloc(size*sizeof(char));
     if(!fgets(line, size, fp)){
         free(line);
@@ -83,7 +83,10 @@
     while(line[curr-1]!='\n'){
         size *= 2;
         line = realloc(line, size*sizeof(char));
-        if(!line) malloc_error();
+        if(!line) {
+            printf("%ld\n", size);
+            malloc_error();
+        }
         fgets(&line[curr], size-curr, fp);
         curr = strlen(line);
     }

--
Gitblit v1.10.0