From af4e4f92dc9e5da160eb6c6870a7b38b863f1c6c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 28 Oct 2014 02:45:06 +0000
Subject: [PATCH] getting rid of sub_arrays, nvidia driver memory leak

---
 src/cnn.c |  432 +++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 329 insertions(+), 103 deletions(-)

diff --git a/src/cnn.c b/src/cnn.c
index f866194..9e9e62b 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -32,6 +32,113 @@
 	show_image_layers(edge, "Test Convolve");
 }
 
+#ifdef GPU
+
+void test_convolutional_layer()
+{
+    int i;
+	image dog = load_image("data/dog.jpg",224,224);
+	network net = parse_network_cfg("cfg/convolutional.cfg");
+//    data test = load_cifar10_data("data/cifar10/test_batch.bin");
+//    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+//    float *y = calloc(net.batch*test.y.cols, sizeof(float));
+    int in_size = get_network_input_size(net)*net.batch;
+    int del_size = get_network_output_size_layer(net, 0)*net.batch;
+    int size = get_network_output_size(net)*net.batch;
+    float *X = calloc(in_size, sizeof(float));
+    float *y = calloc(size, sizeof(float));
+    for(i = 0; i < in_size; ++i){
+        X[i] = dog.data[i%get_network_input_size(net)];
+    }
+//    get_batch(test, net.batch, X, y);
+    clock_t start, end;
+    cl_mem input_cl = cl_make_array(X, in_size);
+    cl_mem truth_cl = cl_make_array(y, size);
+
+    forward_network_gpu(net, input_cl, truth_cl, 1);
+    start = clock();
+    forward_network_gpu(net, input_cl, truth_cl, 1);
+    end = clock();
+    float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
+    printf("forward gpu: %f sec\n", gpu_sec);
+    start = clock();
+    backward_network_gpu(net, input_cl);
+    end = clock();
+    gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
+    printf("backward gpu: %f sec\n", gpu_sec);
+    //float gpu_cost = get_network_cost(net);
+    float *gpu_out = calloc(size, sizeof(float));
+    memcpy(gpu_out, get_network_output(net), size*sizeof(float));
+
+    float *gpu_del = calloc(del_size, sizeof(float));
+    memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
+
+/*
+    start = clock();
+    forward_network(net, X, y, 1);
+    backward_network(net, X);
+    float cpu_cost = get_network_cost(net);
+    end = clock();
+    float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
+    float *cpu_out = calloc(size, sizeof(float));
+    memcpy(cpu_out, get_network_output(net), size*sizeof(float));
+    float *cpu_del = calloc(del_size, sizeof(float));
+    memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
+
+    float sum = 0;
+    float del_sum = 0;
+    for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2);
+    for(i = 0; i < del_size; ++i) {
+        //printf("%f %f\n", cpu_del[i], gpu_del[i]);
+        del_sum += pow(cpu_del[i] - gpu_del[i], 2);
+    }
+    printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost);
+    printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size);
+    */
+}
+
+void test_col2im()
+{
+    float col[] =  {1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2,
+                    1,2,1,2};
+    float im[16] = {0};
+    int batch = 1;
+    int channels = 1;
+    int height=4;
+    int width=4;
+    int ksize = 3;
+    int stride = 1;
+    int pad = 0;
+    col2im_gpu(col, batch,
+         channels,  height,  width,
+         ksize,  stride, pad, im);
+    int i;
+    for(i = 0; i < 16; ++i)printf("%f,", im[i]);
+    printf("\n");
+    /*
+    float data_im[] = {
+            1,2,3,4,
+            5,6,7,8,
+            9,10,11,12
+    };
+    float data_col[18] = {0};
+    im2col_cpu(data_im,  batch,
+      channels,   height,  width,
+      ksize,   stride,  pad, data_col) ;
+    for(i = 0; i < 18; ++i)printf("%f,", data_col[i]);
+    printf("\n");
+    */
+}
+
+#endif
+
 void test_convolve_matrix()
 {
 	image dog = load_image("dog.jpg",300,400);
@@ -171,29 +278,24 @@
 	free_data(train);
 }
 
-void train_full()
+void train_assira()
 {
-	network net = parse_network_cfg("cfg/imagenet.cfg");
+	network net = parse_network_cfg("cfg/assira.cfg");
+    int imgs = 1000/net.batch+1;
+    //imgs = 1;
 	srand(2222222);
 	int i = 0;
 	char *labels[] = {"cat","dog"};
-	float lr = .00001;
-	float momentum = .9;
-	float decay = 0.01;
+    clock_t time;
 	while(1){
 		i += 1000;
-		data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
-		//image im = float_to_image(256, 256, 3,train.X.vals[0]);
-		//visualize_network(net);
-		//cvWaitKey(100);
-		//show_image(im, "input");
-		//cvWaitKey(100);
-		//scale_data_rows(train, 1./255.);
+        time=clock();
+		data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
 		normalize_data_rows(train);
-		clock_t start = clock(), end;
-		float loss = train_network_sgd(net, train, 1000);
-		end = clock();
-		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+		float loss = train_network_sgd(net, train, imgs);
+		printf("%d: %f, Time: %lf seconds\n", i, loss, sec(clock()-time));
 		free_data(train);
 		if(i%10000==0){
 			char buff[256];
@@ -204,45 +306,145 @@
 	}
 }
 
+void train_imagenet()
+{
+	network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_870.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1000/net.batch+1;
+	srand(986987);
+	int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+	while(1){
+		i += 1;
+        time=clock();
+		data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+		normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        #ifdef GPU
+		float loss = train_network_data_gpu(net, train, imgs);
+		printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
+        #endif
+		free_data(train);
+		if(i%10==0){
+			char buff[256];
+			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_larger_%d.cfg", i);
+			save_network(net, buff);
+		}
+	}
+}
+
+void train_imagenet_small()
+{
+	network net = parse_network_cfg("cfg/imagenet_small.cfg");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs=1;
+    srand(111222);
+    int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+
+    i += 1;
+    time=clock();
+    data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+    normalize_data_rows(train);
+    printf("Loaded: %lf seconds\n", sec(clock()-time));
+    time=clock();
+#ifdef GPU
+    float loss = train_network_data_gpu(net, train, imgs);
+    printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
+#endif
+    free_data(train);
+    char buff[256];
+    sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i);
+    save_network(net, buff);
+}
+
+void test_imagenet()
+{
+    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    //imgs=1;
+    srand(2222222);
+    int i = 0;
+    char **names = get_labels("cfg/shortnames.txt");
+    clock_t time;
+    char filename[256];
+    int indexes[10];
+    while(1){
+        gets(filename);
+        image im = load_image_color(filename, 256, 256);
+        normalize_image(im);
+        printf("%d %d %d\n", im.h, im.w, im.c);
+        float *X = im.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        top_predictions(net, 10, indexes);
+        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        for(i = 0; i < 10; ++i){
+            int index = indexes[i];
+            printf("%s: %f\n", names[index], predictions[index]);
+        }
+        free_image(im);
+    }
+}
+
 void test_visualize()
 {
-	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-	srand(2222222);
-	visualize_network(net);
-	cvWaitKey(0);
+    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    visualize_network(net);
+    cvWaitKey(0);
 }
 void test_full()
 {
-	network net = parse_network_cfg("cfg/backup_1300.cfg");
-	srand(2222222);
-	int i,j;
-	int total = 100;
-	char *labels[] = {"cat","dog"};
-	FILE *fp = fopen("preds.txt","w");
-	for(i = 0; i < total; ++i){
-		visualize_network(net);
-		cvWaitKey(100);
-		data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
-		image im = float_to_image(256, 256, 3,test.X.vals[0]);
-		show_image(im, "input");
-		cvWaitKey(100);
-		normalize_data_rows(test);
-		for(j = 0; j < test.X.rows; ++j){
-			float *x = test.X.vals[j];
-			forward_network(net, x, 0);
-			int class = get_predicted_class_network(net);
-			fprintf(fp, "%d\n", class);
-		}
-		free_data(test);
-	}
-	fclose(fp);
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x, 0, 0);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
 }
 
 void test_cifar10()
 {
-	srand(222222);
+    network net = parse_network_cfg("cfg/cifar10_part5.cfg");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
+    clock_t start = clock(), end;
+    float test_acc = network_accuracy(net, test);
+    end = clock();
+    printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
+    visualize_network(net);
+    cvWaitKey(0);
+}
+
+void train_cifar10()
+{
+    srand(555555);
     network net = parse_network_cfg("cfg/cifar10.cfg");
-    //data test = load_cifar10_data("data/cifar10/test_batch.bin");
+    data test = load_cifar10_data("data/cifar10/test_batch.bin");
     int count = 0;
     int iters = 10000/net.batch;
     data train = load_all_cifar10();
@@ -251,11 +453,19 @@
         float loss = train_network_sgd(net, train, iters);
         end = clock();
         //visualize_network(net);
-        //cvWaitKey(1000);
+        //cvWaitKey(5000);
 
         //float test_acc = network_accuracy(net, test);
         //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+        if(count%10 == 0){
+            float test_acc = network_accuracy(net, test);
+            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
+            save_network(net, buff);
+        }else{
+            printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+        }
     }
     free_data(train);
 }
@@ -281,10 +491,10 @@
 void test_nist_single()
 {
     srand(222222);
-    network net = parse_network_cfg("cfg/nist.cfg");
+    network net = parse_network_cfg("cfg/nist_single.cfg");
     data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10);
     normalize_data_rows(train);
-    float loss = train_network_sgd(net, train, 5);
+    float loss = train_network_sgd(net, train, 1);
     printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay);
 
 }
@@ -292,25 +502,43 @@
 void test_nist()
 {
     srand(222222);
+    network net = parse_network_cfg("cfg/nist_final.cfg");
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(test, -144);
+    clock_t start = clock(), end;
+    float test_acc = network_accuracy_multi(net, test,16);
+    end = clock();
+    printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+}
+
+void train_nist()
+{
+    srand(222222);
     network net = parse_network_cfg("cfg/nist.cfg");
     data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-	translate_data_rows(train, -144);
-	scale_data_rows(train, 1./128);
-	translate_data_rows(test, -144);
-	scale_data_rows(test, 1./128);
+    translate_data_rows(train, -144);
+    //scale_data_rows(train, 1./128);
+    translate_data_rows(test, -144);
+    //scale_data_rows(test, 1./128);
     //randomize_data(train);
     int count = 0;
     //clock_t start = clock(), end;
     int iters = 10000/net.batch;
-    while(++count <= 100){
+    while(++count <= 2000){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
         //float test_acc = 0;
         printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
-        //save_network(net, "cfg/nist_basic_trained.cfg");
+        /*printf("%f %f %f %f %f\n", mean_array(get_network_output_layer(net,0), 100),
+          mean_array(get_network_output_layer(net,1), 100),
+          mean_array(get_network_output_layer(net,2), 100),
+          mean_array(get_network_output_layer(net,3), 100),
+          mean_array(get_network_output_layer(net,4), 100));
+         */
+        //save_network(net, "cfg/nist_final2.cfg");
 
         //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
         //end = clock();
@@ -373,7 +601,7 @@
             int index = rand()%m.rows;
             //image p = float_to_image(1690,1,1,m.vals[index]);
             //normalize_image(p);
-            forward_network(net, m.vals[index], 1);
+            forward_network(net, m.vals[index], 0, 1);
             float *out = get_network_output(net);
             float *delta = get_network_delta(net);
             //printf("%f\n", out[0]);
@@ -394,7 +622,7 @@
     matrix test = csv_to_matrix("test.csv");
     truth = pop_column(&test, 0);
     for(i = 0; i < test.rows; ++i){
-        forward_network(net, test.vals[i], 0);
+        forward_network(net, test.vals[i],0, 0);
         float *out = get_network_output(net);
         if(fabs(out[0]) < .5) fprintf(fp, "0\n");
         else fprintf(fp, "1\n");
@@ -494,7 +722,7 @@
     //normalize_array(im.data, im.h*im.w*im.c);
     translate_image(im, -144);
     resize_network(net, im.h, im.w, im.c);
-    forward_network(net, im.data, 0);
+    forward_network(net, im.data, 0, 0);
     image out = get_network_image(net);
     free_image(im);
     cvReleaseImage(&sized);
@@ -546,7 +774,7 @@
         resize_network(net, im.h, im.w, im.c);
         //scale_image(im, 1./255);
         translate_image(im, -144);
-        forward_network(net, im.data, 0);
+        forward_network(net, im.data, 0, 0);
         image out = get_network_image(net);
 
         int dh = (im.h - h)/(out.h-1);
@@ -608,7 +836,7 @@
         image im = load_image(image_path, 0, 0);
         printf("Processing %dx%d image\n", im.h, im.w);
         resize_network(net, im.h, im.w, im.c);
-        forward_network(net, im.data, 0);
+        forward_network(net, im.data, 0, 0);
         image out = get_network_image(net);
 
         int dh = (im.h - h)/h;
@@ -641,7 +869,7 @@
     image im = load_image("data/cat.png", 0, 0);
     printf("Processing %dx%d image\n", im.h, im.w);
     resize_network(net, im.h, im.w, im.c);
-    forward_network(net, im.data, 0);
+    forward_network(net, im.data, 0, 0);
 
     visualize_network(net);
     cvWaitKey(0);
@@ -754,53 +982,51 @@
     cvWaitKey(0);
 }
 
+void test_gpu_net()
+{
+    srand(222222);
+    network net = parse_network_cfg("cfg/nist.cfg");
+    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+    translate_data_rows(train, -144);
+    translate_data_rows(test, -144);
+    int count = 0;
+    int iters = 10000/net.batch;
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+    count = 0;
+    srand(222222);
+    net = parse_network_cfg("cfg/nist.cfg");
+    while(++count <= 5){
+        clock_t start = clock(), end;
+        float loss = train_network_sgd_gpu(net, train, iters);
+        end = clock();
+        float test_acc = network_accuracy(net, test);
+        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+    }
+}
+
 
 int main(int argc, char *argv[])
 {
-    //train_full();
-    //test_distribution();
-    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
-
-    //test_blas();
-    //test_visualize();
+    if(argc != 2){
+        fprintf(stderr, "usage: %s <function>\n", argv[0]);
+        return 0;
+    }
+    if(0==strcmp(argv[1], "train")) train_imagenet();
+    else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
+    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
+    else if(0==strcmp(argv[1], "test")) test_gpu_net();
     //test_gpu_blas();
-    //test_blas();
-    //test_convolve_matrix();
-    //    test_im2row();
-    //test_split();
-    //test_ensemble();
-    //test_nist_single();
-    test_nist();
-    //test_cifar10();
-    //test_vince();
-    //test_full();
-    //tune_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1);
-    //train_VOC();
-    //features_VOC_image(argv[1], argv[2], argv[3], 0, 4);
-    //features_VOC_image(argv[1], argv[2], argv[3], 1, 4);
-    //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
-    //visualize_imagenet_features("data/assira/train.list");
-    //visualize_imagenet_topk("data/VOC2012.list");
-    //visualize_cat();
-    //flip_network();
+    //train_imagenet_small();
+    //test_imagenet();
+    //train_nist();
     //test_visualize();
-    //test_parser();
     fprintf(stderr, "Success!\n");
-    //test_random_preprocess();
-    //test_random_classify();
-    //test_parser();
-    //test_backpropagate();
-    //test_ann();
-    //test_convolve();
-    //test_upsample();
-    //test_rotate();
-    //test_load();
-    //test_network();
-    //test_convolutional_layer();
-    //verify_convolutional_layer();
-    //test_color();
-    //cvWaitKey(0);
     return 0;
 }

--
Gitblit v1.10.0