From af4e4f92dc9e5da160eb6c6870a7b38b863f1c6c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 28 Oct 2014 02:45:06 +0000
Subject: [PATCH] getting rid of sub_arrays, nvidia driver memory leak

---
 src/convolutional_layer.c |   66 +++++++++++++++++++++++----------
 1 files changed, 46 insertions(+), 20 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 00de153..42f4f21 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -2,6 +2,7 @@
 #include "utils.h"
 #include "mini_blas.h"
 #include <stdio.h>
+#include <time.h>
 
 int convolutional_out_height(convolutional_layer layer)
 {
@@ -211,7 +212,7 @@
 {
     int size = layer.size*layer.size*layer.c*layer.n;
     axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n,layer.momentum, layer.bias_updates, 1);
+    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
 
     scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
     axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
@@ -341,6 +342,8 @@
     check_error(cl);
 }
 
+//#define TIMEIT
+
 void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
 {
     int i;
@@ -349,20 +352,35 @@
     int n = convolutional_out_height(layer)*
         convolutional_out_width(layer);
 
-    //cl_write_array(layer.filters_cl, layer.filters, m*k);
-    //cl_write_array(layer.biases_cl, layer.biases, m);
     bias_output_gpu(layer);
+
+    #ifdef TIMEIT
+    clock_t time = clock();
+    printf("Forward\n");
+    #endif
+
     im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Im2col %f\n", sec(clock()-time));
+    time = clock();
+    #endif
+
     for(i = 0; i < layer.batch; ++i){
         cl_mem a = layer.filters_cl;
-        cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
-        cl_mem c = cl_sub_array(layer.output_cl, i*m*n, m*n);
-        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c,n);
-        clReleaseMemObject(b);
-        clReleaseMemObject(c);
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.output_cl;
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
     }
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Gemm %f\n", sec(clock()-time));
+    #endif
     activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-    //cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
+    #ifdef TIMEIT
+    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
+    #endif
 }
 
 void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
@@ -376,14 +394,11 @@
     learn_bias_convolutional_layer_ongpu(layer);
 
     for(i = 0; i < layer.batch; ++i){
-        cl_mem a = cl_sub_array(layer.delta_cl,i*m*k, m*k);
-        cl_mem b = cl_sub_array(layer.col_image_cl,i*k*n, k*n);
+        cl_mem a = layer.delta_cl;
+        cl_mem b = layer.col_image_cl;
         cl_mem c = layer.filter_updates_cl;
 
-        gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
-
-        clReleaseMemObject(a);
-        clReleaseMemObject(b);
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
     }
     //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
 
@@ -395,12 +410,10 @@
 
         for(i = 0; i < layer.batch; ++i){
             cl_mem a = layer.filters_cl;
-            cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
-            cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
+            cl_mem b = layer.delta_cl;
+            cl_mem c = layer.col_image_cl;
 
-            gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            clReleaseMemObject(b);
-            clReleaseMemObject(c);
+            gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
         }
 
         scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
@@ -408,6 +421,18 @@
     }
 }
 
+void pull_convolutional_layer(convolutional_layer layer)
+{
+    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.biases_cl, layer.biases, layer.n);
+}
+
+void push_convolutional_layer(convolutional_layer layer)
+{
+    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.biases_cl, layer.biases, layer.n);
+}
+
 void update_convolutional_layer_gpu(convolutional_layer layer)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
@@ -417,6 +442,7 @@
     scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
     axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
     scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
+    pull_convolutional_layer(layer);
 }
 
 

--
Gitblit v1.10.0