From b13ad6d5fd23f68f506c14ede4282126d893702b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 05 Nov 2014 22:49:58 +0000
Subject: [PATCH] Can validate on imagenet now

---
 src/network.c             |  229 +----------------
 src/network_gpu.c         |  297 ++++++++++++++++++++++
 src/cost_layer.c          |    2 
 src/softmax_layer.h       |    1 
 src/network.h             |    3 
 Makefile                  |   15 
 src/connected_layer.c     |    2 
 src/data.c                |    1 
 src/gemm.c                |   71 +++--
 src/softmax_layer.c       |   12 
 src/cnn.c                 |   79 +++--
 src/image.c               |    2 
 src/convolutional_layer.c |    2 
 src/opencl.h              |    3 
 src/opencl.c              |   23 -
 15 files changed, 451 insertions(+), 291 deletions(-)

diff --git a/Makefile b/Makefile
index b5ad1eb..f5499ae 100644
--- a/Makefile
+++ b/Makefile
@@ -1,10 +1,17 @@
-CC=gcc
 GPU=1
+CLBLAS=0
+
+CC=gcc
 COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
 ifeq ($(GPU), 1) 
 COMMON+=-DGPU
-else
 endif
+
+ifeq ($(CLBLAS), 1) 
+COMMON+=-DCLBLAS
+LDFLAGS=-lclBLAS
+endif
+
 UNAME = $(shell uname)
 OPTS=-Ofast -flto
 ifeq ($(UNAME), Darwin)
@@ -15,7 +22,7 @@
 else
 OPTS+= -march=native
 ifeq ($(GPU), 1)
-LDFLAGS= -lOpenCL
+LDFLAGS+= -lOpenCL
 endif
 endif
 CFLAGS= $(COMMON) $(OPTS)
@@ -25,7 +32,7 @@
 EXEC=cnn
 OBJDIR=./obj/
 
-OBJ=network.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
+OBJ=network.o network_gpu.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
 OBJS = $(addprefix $(OBJDIR), $(OBJ))
 
 all: $(EXEC)
diff --git a/src/cnn.c b/src/cnn.c
index ed5fee3..3badc20 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -278,9 +278,9 @@
 	free_data(train);
 }
 
-void train_assira()
+void train_asirra()
 {
-	network net = parse_network_cfg("cfg/assira.cfg");
+	network net = parse_network_cfg("cfg/imagenet.cfg");
     int imgs = 1000/net.batch+1;
     //imgs = 1;
 	srand(2222222);
@@ -288,18 +288,18 @@
 	char *labels[] = {"cat","dog"};
     clock_t time;
 	while(1){
-		i += 1000;
+		i += 1;
         time=clock();
 		data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
 		normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
-		float loss = train_network_sgd(net, train, imgs);
-		printf("%d: %f, Time: %lf seconds\n", i, loss, sec(clock()-time));
+		float loss = train_network_data_gpu(net, train, imgs);
+		printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
 		free_data(train);
-		if(i%10000==0){
+		if(i%10==0){
 			char buff[256];
-			sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+			sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
 			save_network(net, buff);
 		}
 		//lr *= .99;
@@ -308,10 +308,11 @@
 
 void train_imagenet()
 {
-	network net = parse_network_cfg("cfg/imagenet_small_830.cfg");
+    float avg_loss = 1;
+	network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_nin_2680.cfg");
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1000/net.batch+1;
-	srand(6472345);
+	srand(time(0));
 	int i = 0;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
@@ -322,22 +323,51 @@
 		i += 1;
         time=clock();
 		data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
-		normalize_data_rows(train);
+        //translate_data_rows(train, -144);
+        normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         #ifdef GPU
 		float loss = train_network_data_gpu(net, train, imgs);
-		printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
+        avg_loss = avg_loss*.9 + loss*.1;
+		printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
         #endif
 		free_data(train);
 		if(i%10==0){
 			char buff[256];
-			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_small_%d.cfg", i);
+			sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_nin_%d.cfg", i);
 			save_network(net, buff);
 		}
 	}
 }
 
+void validate_imagenet(char *filename)
+{
+    int i;
+	network net = parse_network_cfg(filename);
+	srand(time(0));
+
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
+    char *path = "/home/pjreddie/data/imagenet/cls.val.list";
+
+    clock_t time;
+    float avg_acc = 0;
+    int splits = 50;
+    for(i = 0; i < splits; ++i){
+        time=clock();
+        data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256);
+        normalize_data_rows(val);
+        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+        time=clock();
+        #ifdef GPU
+		float acc = network_accuracy_gpu(net, val);
+        avg_acc += acc;
+		printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
+        #endif
+		free_data(val);
+	}
+}
+
 void train_imagenet_small()
 {
 	network net = parse_network_cfg("cfg/imagenet_small.cfg");
@@ -369,7 +399,7 @@
 
 void test_imagenet()
 {
-    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+	network net = parse_network_cfg("cfg/imagenet_test.cfg");
     //imgs=1;
     srand(2222222);
     int i = 0;
@@ -380,7 +410,7 @@
     while(1){
         gets(filename);
         image im = load_image_color(filename, 256, 256);
-        normalize_image(im);
+        z_normalize_image(im);
         printf("%d %d %d\n", im.h, im.w, im.c);
         float *X = im.data;
         time=clock();
@@ -395,9 +425,9 @@
     }
 }
 
-void test_visualize()
+void test_visualize(char *filename)
 {
-    network net = parse_network_cfg("cfg/imagenet.cfg");
+    network net = parse_network_cfg(filename);
     visualize_network(net);
     cvWaitKey(0);
 }
@@ -1016,26 +1046,17 @@
 
 int main(int argc, char *argv[])
 {
-    int i;
-    int ksize = 3;
-    int stride = 4;
-    int width_col = 20;
-    for(i = 0; i < 10; ++i){
-        int start = (i<ksize)?0:(i-ksize)/stride + 1;
-        int start2 = (i-ksize+stride)/stride;
-        int end = i/stride + 1;
-        end = (width_col < end) ? width_col : end;
-        printf("%d: %d vs %d, %d\n", i, start,start2, end);
-    }
-    if(argc != 2){
+    if(argc < 2){
         fprintf(stderr, "usage: %s <function>\n", argv[0]);
         return 0;
     }
     if(0==strcmp(argv[1], "train")) train_imagenet();
+    else if(0==strcmp(argv[1], "asirra")) train_asirra();
     else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
     else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
     else if(0==strcmp(argv[1], "test")) test_imagenet();
-    else if(0==strcmp(argv[1], "visualize")) test_visualize();
+    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
     #ifdef GPU
     else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
     #endif
diff --git a/src/connected_layer.c b/src/connected_layer.c
index ac4c417..0b16d20 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -28,7 +28,7 @@
     //layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
     layer->weights = calloc(inputs*outputs, sizeof(float));
     float scale = 1./inputs;
-    scale = .05;
+    scale = .01;
     for(i = 0; i < inputs*outputs; ++i)
         layer->weights[i] = scale*2*(rand_uniform()-.5);
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index fee559b..7531415 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -65,7 +65,7 @@
     layer->bias_updates = calloc(n, sizeof(float));
     layer->bias_momentum = calloc(n, sizeof(float));
     float scale = 1./(size*size*c);
-    scale = .05;
+    scale = .01;
     for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
diff --git a/src/cost_layer.c b/src/cost_layer.c
index dd0ff90..66ce349 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -35,6 +35,8 @@
 void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
 {
     if (!truth) return;
+
+
     copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
     axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
     cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
diff --git a/src/data.c b/src/data.c
index b31a5aa..a5da9d3 100644
--- a/src/data.c
+++ b/src/data.c
@@ -83,6 +83,7 @@
 
 data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
 {
+    clock_t time = clock();
     list *plist = get_paths(filename);
     char **paths = (char **)list_to_array(plist);
     int start = part*plist->size/total;
diff --git a/src/gemm.c b/src/gemm.c
index cc882d5..edffcaf 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -104,7 +104,10 @@
 
 #include "opencl.h"
 #include <math.h>
-//#include <clBLAS.h>
+
+#ifdef CLBLAS
+#include <clBLAS.h>
+#endif
 
 #define STR_HELPER(x) #x
 #define STR(x) STR_HELPER(x)
@@ -165,13 +168,6 @@
         float BETA,
         cl_mem C_gpu, int ldc)
 {
-/*
-    cl_setup();
-    cl_command_queue queue = cl.queue;
-    cl_event event;
-    cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
-    */
-
     gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
 }
 
@@ -181,6 +177,13 @@
         float BETA,
         cl_mem C_gpu, int c_off, int ldc)
 {
+#ifdef CLBLAS
+    cl_setup();
+    cl_command_queue queue = cl.queue;
+    cl_event event;
+    cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event);
+    check_error(cl);
+#else
     //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
     cl_setup();
     cl_kernel      gemm_kernel = get_gemm_kernel();
@@ -213,6 +216,7 @@
 
     clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
     check_error(cl);
+    #endif
 }
 
 void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, 
@@ -284,7 +288,7 @@
 
 void time_ongpu(int TA, int TB, int m, int k, int n)
 {
-    int iter = 128;
+    int iter = 10;
     float *a = random_matrix(m,k);
     float *b = random_matrix(k,n);
 
@@ -302,7 +306,7 @@
     for(i = 0; i<iter; ++i){
         gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
     }
-    double flop = m*n*(2.*k+3.)*iter;
+    double flop = m*n*k*iter;
     double gflop = flop/pow(10., 9);
     end = clock();
     double seconds = sec(end-start);
@@ -352,32 +356,43 @@
 void test_gpu_blas()
 {
     /*
-    test_gpu_accuracy(0,0,10,576,75); 
+       test_gpu_accuracy(0,0,10,576,75); 
 
-    test_gpu_accuracy(0,0,17,10,10); 
-    test_gpu_accuracy(1,0,17,10,10); 
-    test_gpu_accuracy(0,1,17,10,10); 
-    test_gpu_accuracy(1,1,17,10,10); 
+       test_gpu_accuracy(0,0,17,10,10); 
+       test_gpu_accuracy(1,0,17,10,10); 
+       test_gpu_accuracy(0,1,17,10,10); 
+       test_gpu_accuracy(1,1,17,10,10); 
 
-    test_gpu_accuracy(0,0,1000,10,100); 
-    test_gpu_accuracy(1,0,1000,10,100); 
-    test_gpu_accuracy(0,1,1000,10,100); 
-    test_gpu_accuracy(1,1,1000,10,100); 
-    */
+       test_gpu_accuracy(0,0,1000,10,100); 
+       test_gpu_accuracy(1,0,1000,10,100); 
+       test_gpu_accuracy(0,1,1000,10,100); 
+       test_gpu_accuracy(1,1,1000,10,100); 
+     */
+    time_ongpu(0,0,128,1200,4096); 
+    time_ongpu(0,0,128,1200,4096); 
+    time_ongpu(0,0,128,1200,4096); 
+
+    time_ongpu(0,1,128,1200,4096); 
+    time_ongpu(1,0,1200,4096,128); 
+    time_ongpu(1,0,4096,1200,128); 
+    time_ongpu(1,0,1200,128,4096); 
+
     test_gpu_accuracy(0,0,131,4093,1199); 
     test_gpu_accuracy(0,1,131,4093,1199); 
     test_gpu_accuracy(1,0,131,4093,1199); 
     test_gpu_accuracy(1,1,131,4093,1199); 
+    /*
 
-    time_ongpu(0,0,1024,1024,1024); 
-    time_ongpu(0,1,1024,1024,1024); 
-    time_ongpu(1,0,1024,1024,1024); 
-    time_ongpu(1,1,1024,1024,1024); 
+       time_ongpu(0,0,1024,1024,1024); 
+       time_ongpu(0,1,1024,1024,1024); 
+       time_ongpu(1,0,1024,1024,1024); 
+       time_ongpu(1,1,1024,1024,1024); 
 
-    time_ongpu(0,0,128,4096,1200); 
-    time_ongpu(0,1,128,4096,1200); 
-    time_ongpu(1,0,128,4096,1200); 
-    time_ongpu(1,1,128,4096,1200); 
+       time_ongpu(0,0,128,4096,1200); 
+       time_ongpu(0,1,128,4096,1200); 
+       time_ongpu(1,0,128,4096,1200); 
+       time_ongpu(1,1,128,4096,1200); 
+     */
 
     /*
        time_gpu_random_matrix(0,0,1000,1000,100); 
diff --git a/src/image.c b/src/image.c
index bf34e09..15b1523 100644
--- a/src/image.c
+++ b/src/image.c
@@ -423,7 +423,7 @@
         exit(0);
     }
     if(h && w && (src->height != h || src->width != w)){
-        printf("Resized!\n");
+        //printf("Resized!\n");
         IplImage *resized = resizeImage(src, h, w, 1);
         cvReleaseImage(&src);
         src = resized;
diff --git a/src/network.c b/src/network.c
index b30b5d1..d7af995 100644
--- a/src/network.c
+++ b/src/network.c
@@ -31,150 +31,6 @@
     return net;
 }
 
-#ifdef GPU
-
-void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
-{
-    //printf("start\n");
-    int i;
-    for(i = 0; i < net.n; ++i){
-        //clock_t time = clock();
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer_gpu(layer, input, truth);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        //printf("%d %f\n", i, sec(clock()-time));
-        /*
-           else if(net.types[i] == CROP){
-           crop_layer layer = *(crop_layer *)net.layers[i];
-           forward_crop_layer(layer, input);
-           input = layer.output;
-           }
-           else if(net.types[i] == NORMALIZATION){
-           normalization_layer layer = *(normalization_layer *)net.layers[i];
-           forward_normalization_layer(layer, input);
-           input = layer.output;
-           }
-         */
-    }
-}
-
-void backward_network_gpu(network net, cl_mem input)
-{
-    int i;
-    cl_mem prev_input;
-    cl_mem prev_delta;
-    for(i = net.n-1; i >= 0; --i){
-        //clock_t time = clock();
-        if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
-        }else{
-            prev_input = get_network_output_cl_layer(net, i-1);
-            prev_delta = get_network_delta_cl_layer(net, i-1);
-        }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            backward_maxpool_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            backward_softmax_layer_gpu(layer, prev_delta);
-        }
-        //printf("back: %d %f\n", i, sec(clock()-time));
-    }
-}
-
-void update_network_gpu(network net)
-{
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer);
-        }
-    }
-}
-
-cl_mem get_network_output_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    return 0;
-}
-
-cl_mem get_network_delta_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    return 0;
-}
-
-#endif
 
 void forward_network(network net, float *input, float *truth, int train)
 {
@@ -383,70 +239,6 @@
 }
 
 
-#ifdef GPU
-float train_network_datum_gpu(network net, float *x, float *y)
-{
-    int x_size = get_network_input_size(net)*net.batch;
-    int y_size = get_network_output_size(net)*net.batch;
-    clock_t time = clock();
-    if(!*net.input_cl){
-        *net.input_cl = cl_make_array(x, x_size);
-        *net.truth_cl = cl_make_array(y, y_size);
-    }else{
-        cl_write_array(*net.input_cl, x, x_size);
-        cl_write_array(*net.truth_cl, y, y_size);
-    }
-    //printf("trans %f\n", sec(clock()-time));
-    time = clock();
-    forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
-    //printf("forw %f\n", sec(clock()-time));
-    time = clock();
-    backward_network_gpu(net, *net.input_cl);
-    //printf("back %f\n", sec(clock()-time));
-    time = clock();
-    float error = get_network_cost(net);
-    update_network_gpu(net);
-    //printf("updt %f\n", sec(clock()-time));
-    time = clock();
-    return error;
-}
-
-float train_network_sgd_gpu(network net, data d, int n)
-{
-    int batch = net.batch;
-    float *X = calloc(batch*d.X.cols, sizeof(float));
-    float *y = calloc(batch*d.y.cols, sizeof(float));
-
-    int i;
-    float sum = 0;
-    for(i = 0; i < n; ++i){
-        get_random_batch(d, batch, X, y);
-        float err = train_network_datum_gpu(net, X, y);
-        sum += err;
-    }
-    free(X);
-    free(y);
-    return (float)sum/(n*batch);
-}
-
-float train_network_data_gpu(network net, data d, int n)
-{
-    int batch = net.batch;
-    float *X = calloc(batch*d.X.cols, sizeof(float));
-    float *y = calloc(batch*d.y.cols, sizeof(float));
-
-    int i;
-    float sum = 0;
-    for(i = 0; i < n; ++i){
-        get_next_batch(d, batch, i*batch, X, y);
-        float err = train_network_datum_gpu(net, X, y);
-        sum += err;
-    }
-    free(X);
-    free(y);
-    return (float)sum/(n*batch);
-}
-#endif
 
 
 float train_network_datum(network net, float *x, float *y)
@@ -477,6 +269,7 @@
     free(y);
     return (float)sum/(n*batch);
 }
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -496,6 +289,23 @@
     return (float)sum/(n*batch);
 }
 
+float train_network_data_cpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
 
 void train_network(network net, data d)
 {
@@ -687,6 +497,7 @@
     }
 }
 
+
 float *network_predict(network net, float *input)
 {
     forward_network(net, input, 0, 0);
@@ -724,7 +535,7 @@
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;
diff --git a/src/network.h b/src/network.h
index 7625904..eeaef41 100644
--- a/src/network.h
+++ b/src/network.h
@@ -43,6 +43,8 @@
 cl_mem get_network_delta_cl_layer(network net, int i);
 float train_network_sgd_gpu(network net, data d, int n);
 float train_network_data_gpu(network net, data d, int n);
+float *network_predict_gpu(network net, float *input);
+float network_accuracy_gpu(network net, data d);
 #endif
 
 network make_network(int n, int batch);
@@ -51,6 +53,7 @@
 void update_network(network net);
 float train_network_sgd(network net, data d, int n);
 float train_network_batch(network net, data d, int n);
+float train_network_data_cpu(network net, data d, int n);
 void train_network(network net, data d);
 matrix network_predict_data(network net, data test);
 float *network_predict(network net, float *input);
diff --git a/src/network_gpu.c b/src/network_gpu.c
new file mode 100644
index 0000000..7302664
--- /dev/null
+++ b/src/network_gpu.c
@@ -0,0 +1,297 @@
+#include <stdio.h>
+#include <time.h>
+
+#include "network.h"
+#include "image.h"
+#include "data.h"
+#include "utils.h"
+
+#include "crop_layer.h"
+#include "connected_layer.h"
+#include "convolutional_layer.h"
+#include "maxpool_layer.h"
+#include "cost_layer.h"
+#include "normalization_layer.h"
+#include "freeweight_layer.h"
+#include "softmax_layer.h"
+#include "dropout_layer.h"
+
+#ifdef GPU
+
+void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
+{
+    //printf("start\n");
+    int i;
+    for(i = 0; i < net.n; ++i){
+        //clock_t time = clock();
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            forward_convolutional_layer_gpu(layer, input);
+            input = layer.output_cl;
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer_gpu(layer, input, truth);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            forward_connected_layer_gpu(layer, input);
+            input = layer.output_cl;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            forward_maxpool_layer_gpu(layer, input);
+            input = layer.output_cl;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer_gpu(layer, input);
+            input = layer.output_cl;
+        }
+        //printf("%d %f\n", i, sec(clock()-time));
+        /*
+           else if(net.types[i] == CROP){
+           crop_layer layer = *(crop_layer *)net.layers[i];
+           forward_crop_layer(layer, input);
+           input = layer.output;
+           }
+           else if(net.types[i] == NORMALIZATION){
+           normalization_layer layer = *(normalization_layer *)net.layers[i];
+           forward_normalization_layer(layer, input);
+           input = layer.output;
+           }
+         */
+    }
+}
+
+void backward_network_gpu(network net, cl_mem input)
+{
+    int i;
+    cl_mem prev_input;
+    cl_mem prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        //clock_t time = clock();
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_cl_layer(net, i-1);
+            prev_delta = get_network_delta_cl_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            backward_convolutional_layer_gpu(layer, prev_delta);
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer_gpu(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            backward_connected_layer_gpu(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            backward_maxpool_layer_gpu(layer, prev_delta);
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            backward_softmax_layer_gpu(layer, prev_delta);
+        }
+        //printf("back: %d %f\n", i, sec(clock()-time));
+    }
+}
+
+void update_network_gpu(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            update_convolutional_layer_gpu(layer);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            update_connected_layer_gpu(layer);
+        }
+    }
+}
+
+cl_mem get_network_output_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    return 0;
+}
+
+cl_mem get_network_delta_cl_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    return 0;
+}
+
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    int x_size = get_network_input_size(net)*net.batch;
+    int y_size = get_network_output_size(net)*net.batch;
+    //clock_t time = clock();
+    if(!*net.input_cl){
+        *net.input_cl = cl_make_array(x, x_size);
+        *net.truth_cl = cl_make_array(y, y_size);
+    }else{
+        cl_write_array(*net.input_cl, x, x_size);
+        cl_write_array(*net.truth_cl, y, y_size);
+    }
+    //printf("trans %f\n", sec(clock()-time));
+    //time = clock();
+    forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
+    //printf("forw %f\n", sec(clock()-time));
+    //time = clock();
+    backward_network_gpu(net, *net.input_cl);
+    //printf("back %f\n", sec(clock()-time));
+    //time = clock();
+    update_network_gpu(net);
+    float error = get_network_cost(net);
+    //printf("updt %f\n", sec(clock()-time));
+    //time = clock();
+    return error;
+}
+
+float train_network_sgd_gpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum_gpu(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network_data_gpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum_gpu(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float *get_network_output_layer_gpu(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.output;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        pull_softmax_layer_output(layer);
+        return layer.output;
+    }
+    return 0;
+}
+
+float *get_network_output_gpu(network net)
+{
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer_gpu(net, i);
+}
+
+float *network_predict_gpu(network net, float *input)
+{
+    
+    int size = get_network_input_size(net) * net.batch;
+    cl_mem input_cl = cl_make_array(input, size);
+    forward_network_gpu(net, input_cl, 0, 0);
+    float *out = get_network_output_gpu(net);
+    clReleaseMemObject(input_cl);
+    return out;
+}
+
+matrix network_predict_data_gpu(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict_gpu(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+float network_accuracy_gpu(network net, data d)
+{
+    matrix guess = network_predict_data_gpu(net, d);
+    float acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
+}
+
+
+
+#endif
diff --git a/src/opencl.c b/src/opencl.c
index fc7310c..50a03a6 100644
--- a/src/opencl.c
+++ b/src/opencl.c
@@ -4,7 +4,10 @@
 #include <string.h>
 #include <time.h>
 #include <unistd.h>
-//#include <clBLAS.h>
+
+#ifdef CLBLAS
+#include <clBLAS.h>
+#endif
 
 #include "opencl.h"
 #include "utils.h"
@@ -81,7 +84,7 @@
 
     }
     int index = getpid()%num_devices;
-    index = 1;
+    index = 0;
     printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
     info.device = devices[index];
     fprintf(stderr, "Found %d device(s)\n", num_devices);
@@ -95,24 +98,14 @@
     check_error(info);
     info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
     check_error(info);
-    for(i = 0; i < NUM_QUEUES; ++i){
-        info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
-        check_error(info);
-    }
-    //info.error = clblasSetup();
+    #ifdef CLBLAS
+    info.error = clblasSetup();
+    #endif
     check_error(info);
     info.initialized = 1;
     return info;
 }
 
-void wait_for_queues()
-{
-    int i;
-    for(i = 0; i < NUM_QUEUES; ++i){
-        clFinish(cl.queues[i]);
-    }
-}
-
 cl_program cl_fprog(char *filename, char *options, cl_info info)
 {
 	size_t srcsize;
diff --git a/src/opencl.h b/src/opencl.h
index aedc056..cdc9e05 100644
--- a/src/opencl.h
+++ b/src/opencl.h
@@ -7,7 +7,6 @@
 #include <CL/cl.h>
 #endif
 
-#define NUM_QUEUES 8
 
 typedef struct {
     int initialized;
@@ -16,13 +15,11 @@
     cl_device_id device;
     cl_context context;
     cl_command_queue queue;
-    cl_command_queue queues[NUM_QUEUES];
 }cl_info;
 
 extern cl_info cl;
 
 void cl_setup();
-void wait_for_queues();
 void check_error(cl_info info);
 cl_kernel get_kernel(char *filename, char *kernelname, char *options);
 void cl_read_array(cl_mem mem, float *x, int n);
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index dae332e..c598328 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -50,6 +50,12 @@
 }
 
 #ifdef GPU
+
+void pull_softmax_layer_output(const softmax_layer layer)
+{
+    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
+}
+
 cl_kernel get_softmax_forward_kernel()
 {
     static int init = 0;
@@ -77,6 +83,12 @@
 
     clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
     check_error(cl);
+
+/*
+    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
+    int z;
+    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
+    */
 }
 
 void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
diff --git a/src/softmax_layer.h b/src/softmax_layer.h
index 2f9f979..c8ebddf 100644
--- a/src/softmax_layer.h
+++ b/src/softmax_layer.h
@@ -20,6 +20,7 @@
 void backward_softmax_layer(const softmax_layer layer, float *delta);
 
 #ifdef GPU
+void pull_softmax_layer_output(const softmax_layer layer);
 void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
 void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
 #endif

--
Gitblit v1.10.0