From b2b7137b6f185ce2f01664d782a09b08d50d5a07 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 28 Jan 2014 07:16:56 +0000
Subject: [PATCH] About to do something stupid...

---
 src/network.c |   95 ++++++++++++++++++++++++++++++++++-------------
 1 files changed, 68 insertions(+), 27 deletions(-)

diff --git a/src/network.c b/src/network.c
index 29234da..2ce13d8 100644
--- a/src/network.c
+++ b/src/network.c
@@ -6,6 +6,7 @@
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+//#include "old_conv.h"
 #include "maxpool_layer.h"
 #include "softmax_layer.h"
 
@@ -63,7 +64,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, momentum, decay);
+            update_connected_layer(layer, step, momentum, 0);
         }
     }
 }
@@ -113,14 +114,17 @@
     return get_network_delta_layer(net, net.n-1);
 }
 
-void calculate_error_network(network net, double *truth)
+double calculate_error_network(network net, double *truth)
 {
+    double sum = 0;
     double *delta = get_network_delta(net);
     double *out = get_network_output(net);
     int i, k = get_network_output_size(net);
     for(i = 0; i < k; ++i){
         delta[i] = truth[i] - out[i];
+        sum += delta[i]*delta[i];
     }
+    return sum;
 }
 
 int get_predicted_class_network(network net)
@@ -130,9 +134,9 @@
     return max_index(out, k);
 }
 
-void backward_network(network net, double *input, double *truth)
+double backward_network(network net, double *input, double *truth)
 {
-    calculate_error_network(net, truth);
+    double error = calculate_error_network(net, truth);
     int i;
     double *prev_input;
     double *prev_delta;
@@ -146,8 +150,9 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer, prev_input);
-            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
+            learn_convolutional_layer(layer);
+            //learn_convolutional_layer(layer);
+            //if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -163,31 +168,51 @@
             if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
         }
     }
+    return error;
 }
 
-int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
+double train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
 {
         forward_network(net, x);
         int class = get_predicted_class_network(net);
-        backward_network(net, x, y);
+        double error = backward_network(net, x, y);
         update_network(net, step, momentum, decay);
-        return (y[class]?1:0);
+        //return (y[class]?1:0);
+        return error;
 }
 
-double train_network_sgd(network net, data d, double step, double momentum,double decay)
+double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
+{
+    int i;
+    double error = 0;
+    for(i = 0; i < n; ++i){
+        int index = rand()%d.X.rows;
+        error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        //if((i+1)%10 == 0){
+        //    printf("%d: %f\n", (i+1), (double)correct/(i+1));
+        //}
+    }
+    return error/n;
+}
+double train_network_batch(network net, data d, int n, double step, double momentum,double decay)
 {
     int i;
     int correct = 0;
-    for(i = 0; i < d.X.rows; ++i){
+    for(i = 0; i < n; ++i){
         int index = rand()%d.X.rows;
-        correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
-        if((i+1)%10 == 0){
-            printf("%d: %f\n", (i+1), (double)correct/(i+1));
-        }
+        double *x = d.X.vals[index];
+        double *y = d.y.vals[index];
+        forward_network(net, x);
+        int class = get_predicted_class_network(net);
+        backward_network(net, x, y);
+        correct += (y[class]?1:0);
     }
-    return (double)correct/d.X.rows;
+    update_network(net, step, momentum, decay);
+    return (double)correct/n;
+
 }
 
+
 void train_network(network net, data d, double step, double momentum, double decay)
 {
     int i;
@@ -264,11 +289,32 @@
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_filters(layer, buff);
+            visualize_convolutional_layer(layer, buff);
         }
     } 
 }
 
+double *network_predict(network net, double *input)
+{
+    forward_network(net, input);
+    double *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    for(i = 0; i < test.X.rows; ++i){
+        double *out = network_predict(net, test.X.vals[i]);
+        for(j = 0; j < k; ++j){
+            pred.vals[i][j] = out[j];
+        }
+    }
+    return pred;   
+}
+
 void print_network(network net)
 {
     int i,j;
@@ -306,17 +352,12 @@
         fprintf(stderr, "\n");
     }
 }
+
 double network_accuracy(network net, data d)
 {
-    int i;
-    int correct = 0;
-    int k = get_network_output_size(net);
-    for(i = 0; i < d.X.rows; ++i){
-        forward_network(net, d.X.vals[i]);
-        double *out = get_network_output(net);
-        int guess = max_index(out, k);
-        if(d.y.vals[i][guess]) ++correct;
-    }
-    return (double)correct/d.X.rows;
+    matrix guess = network_predict_data(net, d);
+    double acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
 }
 

--
Gitblit v1.10.0