From b2b7137b6f185ce2f01664d782a09b08d50d5a07 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 28 Jan 2014 07:16:56 +0000
Subject: [PATCH] About to do something stupid...

---
 src/tests.c |  139 +++++++++++++++++++++++++++++-----------------
 1 files changed, 87 insertions(+), 52 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 2a50bac..af22ddb 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -1,4 +1,5 @@
 #include "connected_layer.h"
+//#include "old_conv.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 #include "network.h"
@@ -7,6 +8,7 @@
 #include "data.h"
 #include "matrix.h"
 #include "utils.h"
+#include "mini_blas.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -28,35 +30,41 @@
     show_image_layers(edge, "Test Convolve");
 }
 
+void test_convolve_matrix()
+{
+    image dog = load_image("dog.jpg");
+    printf("dog channels %d\n", dog.c);
+    
+    int size = 11;
+    int stride = 4;
+    int n = 40;
+    double *filters = make_random_image(size, size, dog.c*n).data;
+
+    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+    int mh = (size*size*dog.c);
+    double *matrix = calloc(mh*mw, sizeof(double));
+
+    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+
+
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+    }
+    end = clock();
+    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    show_image_layers(edge, "Test Convolve");
+    cvWaitKey(0);
+}
+
 void test_color()
 {
     image dog = load_image("test_color.png");
     show_image_layers(dog, "Test Color");
 }
 
-void test_convolutional_layer()
-{
-    srand(0);
-    image dog = load_image("dog.jpg");
-    int i;
-    int n = 3;
-    int stride = 1;
-    int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
-    char buff[256];
-    for(i = 0; i < n; ++i) {
-        sprintf(buff, "Kernel %d", i);
-        show_image(layer.kernels[i], buff);
-    }
-    forward_convolutional_layer(layer, dog.data);
-    
-    image output = get_convolutional_image(layer);
-    maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
-    forward_maxpool_layer(mlayer, layer.output);
-
-    show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
-}
-
 void verify_convolutional_layer()
 {
     srand(0);
@@ -87,7 +95,7 @@
     image out_delta = get_convolutional_delta(layer);
     for(i = 0; i < out.h*out.w*out.c; ++i){
         out_delta.data[i] = 1;
-        backward_convolutional_layer(layer, test.data, in_delta.data);
+        //backward_convolutional_layer(layer, test.data, in_delta.data);
         image partial = copy_image(in_delta);
         jacobian2[i] = partial.data;
         out_delta.data[i] = 0;
@@ -199,7 +207,7 @@
 {
     srand(444444);
     srand(888888);
-    network net = parse_network_cfg("nist.cfg");
+    network net = parse_network_cfg("nist_basic.cfg");
     data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
     normalize_data_rows(train);
@@ -210,16 +218,16 @@
     double momentum = .9;
     double decay = 0.01;
     clock_t start = clock(), end;
-    while(++count <= 1000){
-        double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
-        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
+    while(++count <= 100){
+        visualize_network(net);
+        double loss = train_network_sgd(net, train, 10000, lr, momentum, decay);
+        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
         end = clock();
         printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
         start=end;
-        visualize_network(net);
         cvWaitKey(100);
         //lr /= 2; 
-        if(count%5 == 0 && 0){
+        if(count%5 == 0){
             double train_acc = network_accuracy(net, train);
             fprintf(stderr, "\nTRAIN: %f\n", train_acc);
             double test_acc = network_accuracy(net, test);
@@ -238,11 +246,9 @@
     data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
     normalize_data_rows(test);
     data train = d;
-    /*
-       data *split = split_data(d, 1, 10);
-       data train = split[0];
-       data test = split[1];
-     */
+    //   data *split = split_data(d, 1, 10);
+    //   data train = split[0];
+    //   data test = split[1];
     matrix prediction = make_matrix(test.y.rows, test.y.cols);
     int n = 30;
     for(i = 0; i < n; ++i){
@@ -268,22 +274,6 @@
     printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
-void test_kernel_update()
-{
-    srand(0);
-    double delta[] = {.1};
-    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
-    double kernel[] = {1,2,3,4,5,6,7,8,9};
-    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR);
-    layer.kernels[0].data = kernel;
-    layer.delta = delta;
-    learn_convolutional_layer(layer, input);
-    print_image(layer.kernels[0]);
-    print_image(get_convolutional_delta(layer));
-    print_image(layer.kernel_updates[0]);
-
-}
-
 void test_random_classify()
 {
     network net = parse_network_cfg("connected.cfg");
@@ -336,10 +326,55 @@
     printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
+double *random_matrix(int rows, int cols)
+{
+    int i, j;
+    double *m = calloc(rows*cols, sizeof(double));
+    for(i = 0; i < rows; ++i){
+        for(j = 0; j < cols; ++j){
+            m[i*cols+j] = (double)rand()/RAND_MAX;
+        }
+    }
+    return m;
+}
+
+void test_blas()
+{
+    int m = 1000, n = 1000, k = 1000;
+    double *a = random_matrix(m,k);
+    double *b = random_matrix(k,n);
+    double *c = random_matrix(m,n);
+    int i;
+    for(i = 0; i<1000; ++i){
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    }
+}
+
+void test_im2row()
+{
+    int h = 20;
+    int w = 20;
+    int c = 3;
+    int stride = 1;
+    int size = 11;
+    image test = make_random_image(h,w,c);
+    int mc = 1;
+    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+    int mh = (size*size*c);
+    int msize = mc*mw*mh;
+    double *matrix = calloc(msize, sizeof(double));
+    int i;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+        image render = double_to_image(mh, mw, mc, matrix);
+    }
+}
 
 int main()
 {
-    //test_kernel_update();
+    //test_blas();
+    //test_convolve_matrix();
+    //    test_im2row();
     //test_split();
     //test_ensemble();
     test_nist();

--
Gitblit v1.10.0