From b32a287e38f4c6a41828f18b4669dec9f3af4943 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 17 Jul 2014 17:17:52 +0000
Subject: [PATCH] Merge branch 'master' of pjreddie.com:jnet

---
 src/convolutional_layer.c |  312 +++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 259 insertions(+), 53 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index f83622b..44e9244 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,86 +1,292 @@
 #include "convolutional_layer.h"
+#include "utils.h"
+#include "mini_blas.h"
+#include <stdio.h>
 
-double convolution_activation(double x)
+int convolutional_out_height(convolutional_layer layer)
 {
-    return x*(x>0);
+    int h = layer.h;
+    if (!layer.pad) h -= layer.size;
+    else h -= 1;
+    return h/layer.stride + 1;
 }
 
-double convolution_gradient(double x)
+int convolutional_out_width(convolutional_layer layer)
 {
-    return (x>=0);
+    int w = layer.w;
+    if (!layer.pad) w -= layer.size;
+    else w -= 1;
+    return w/layer.stride + 1;
 }
 
-convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
+image get_convolutional_image(convolutional_layer layer)
+{
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.output);
+}
+
+image get_convolutional_delta(convolutional_layer layer)
+{
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.delta);
+}
+
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
 {
     int i;
-    convolutional_layer layer;
-    layer.n = n;
-    layer.stride = stride;
-    layer.kernels = calloc(n, sizeof(image));
-    layer.kernel_updates = calloc(n, sizeof(image));
+    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
+    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->n = n;
+    layer->batch = batch;
+    layer->stride = stride;
+    layer->size = size;
+    layer->pad = pad;
+
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
+
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    layer->bias_momentum = calloc(n, sizeof(float));
+    float scale = 1./(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
     for(i = 0; i < n; ++i){
-        layer.kernels[i] = make_random_kernel(size, c);
-        layer.kernel_updates[i] = make_random_kernel(size, c);
+        //layer->biases[i] = rand_normal()*scale + scale;
+        layer->biases[i] = .5;
     }
-    layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
-    layer.upsampled = make_image(h,w,n);
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    #ifdef GPU
+    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
+    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
+    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
+
+    layer->biases_cl = cl_make_array(layer->biases, n);
+    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
+    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
+
+    layer->col_image_cl = cl_make_array(layer->col_image, layer.batch*out_h*out_w*size*size*c);
+    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
+    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
+    #endif
+    layer->activation = activation;
+
+    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
     return layer;
 }
 
-void run_convolutional_layer(const image input, const convolutional_layer layer)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
 {
-    int i;
-    for(i = 0; i < layer.n; ++i){
-        convolve(input, layer.kernels[i], layer.stride, i, layer.output);
-    }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = convolution_activation(input.data[i]);
-    }
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
 }
 
-void backpropagate_layer(image input, convolutional_layer layer)
+void bias_output(const convolutional_layer layer)
 {
-    int i;
-    zero_image(input);
-    for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
-    }
-}
-
-void backpropagate_layer_convolve(image input, convolutional_layer layer)
-{
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
-    }
-
-    zero_image(input);
-    upsample_image(layer.output, layer.stride, layer.upsampled);
-    for(j = 0; j < input.c; ++j){
+    int i,j,b;
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
         for(i = 0; i < layer.n; ++i){
-            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j);
+            for(j = 0; j < out_h*out_w; ++j){
+                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+            }
         }
     }
+}
 
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
+void forward_convolutional_layer(const convolutional_layer layer, float *in)
+{
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    int i;
+
+    bias_output(layer);
+
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = out_h*out_w;
+
+    float *a = layer.filters;
+    float *b = layer.col_image;
+    float *c = layer.output;
+
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        in += layer.h*layer.w*layer.c;
+        b += k*n;
+    }
+    /*
+    int i;
+    for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
+    printf("\n");
+    */
+    activate_array(layer.output, m*n*layer.batch, layer.activation, 0.);
+}
+
+#ifdef GPU
+void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
+{
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = convolutional_out_height(layer)*
+        convolutional_out_width(layer)*
+        layer.batch;
+
+    cl_write_array(layer.filters_cl, layer.filters, m*k);
+    cl_mem a = layer.filters_cl;
+    cl_mem b = layer.col_image_cl;
+    cl_mem c = layer.output_cl;
+    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
+    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,0,c,n);
+    activate_array_ongpu(layer.output_cl, m*n, layer.activation, 0.);
+    cl_read_array(layer.output_cl, layer.output, m*n);
+}
+#endif
+
+void learn_bias_convolutional_layer(convolutional_layer layer)
+{
+    int i,b;
+    int size = convolutional_out_height(layer)
+        *convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
+        for(i = 0; i < layer.n; ++i){
+            layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size);
+        }
     }
 }
 
-void error_convolutional_layer(image input, convolutional_layer layer)
+void backward_convolutional_layer(convolutional_layer layer, float *delta)
 {
     int i;
-    for(i = 0; i < layer.n; ++i){
-        kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output);
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
+    learn_bias_convolutional_layer(layer);
+
+    float *a = layer.delta;
+    float *b = layer.col_image;
+    float *c = layer.filter_updates;
+
+    for(i = 0; i < layer.batch; ++i){
+        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+        a += m*k;
+        b += k*n;
     }
-    image old_input = copy_image(input);
-    zero_image(input);
-    for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+
+    if(delta){
+        m = layer.size*layer.size*layer.c;
+        k = layer.n;
+        n = convolutional_out_height(layer)*
+            convolutional_out_width(layer);
+
+        a = layer.filters;
+        b = layer.delta;
+        c = layer.col_image;
+
+        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+        for(i = 0; i < layer.batch; ++i){
+            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
+            col2im_cpu(c, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
+            c += k*n;
+            delta += layer.h*layer.w*layer.c;
+        }
     }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = input.data[i]*convolution_gradient(input.data[i]);
+}
+
+void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_cpu(layer.n, step, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
+
+    scal_cpu(size, 1.-step*decay, layer.filters, 1);
+    axpy_cpu(size, step, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
+}
+
+
+image get_convolutional_filter(convolutional_layer layer, int i)
+{
+    int h = layer.size;
+    int w = layer.size;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+}
+
+image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+{
+    image *filters = calloc(layer.n, sizeof(image));
+    int i,j,k,c;
+    if(!prev_filters){
+        for(i = 0; i < layer.n; ++i){
+            filters[i] = copy_image(get_convolutional_filter(layer, i));
+        }
     }
-    free_image(old_input);
+    else{
+        image base = prev_filters[0];
+        for(i = 0; i < layer.n; ++i){
+            image filter = get_convolutional_filter(layer, i);
+            filters[i] = make_image(base.h, base.w, base.c);
+            for(j = 0; j < layer.size; ++j){
+                for(k = 0; k < layer.size; ++k){
+                    for(c = 0; c < layer.c; ++c){
+                        float weight = get_pixel(filter, j, k, c);
+                        image prev_filter = copy_image(prev_filters[c]);
+                        scale_image(prev_filter, weight);
+                        add_into_image(prev_filter, filters[i], 0,0);
+                        free_image(prev_filter);
+                    }
+                }
+            }
+        }
+    }
+    return filters;
+}
+
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+{
+    image *single_filters = weighted_sum_filters(layer, 0);
+    show_images(single_filters, layer.n, window);
+
+    image delta = get_convolutional_image(layer);
+    image dc = collapse_image_layers(delta, 1);
+    char buff[256];
+    sprintf(buff, "%s: Output", window);
+    show_image(dc, buff);
+    save_image(dc, buff);
+    free_image(dc);
+    return single_filters;
 }
 

--
Gitblit v1.10.0