From b32a287e38f4c6a41828f18b4669dec9f3af4943 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 17 Jul 2014 17:17:52 +0000
Subject: [PATCH] Merge branch 'master' of pjreddie.com:jnet

---
 src/network.c |  225 ++++++++++++++++++++++++++++++++++++--------------------
 1 files changed, 144 insertions(+), 81 deletions(-)

diff --git a/src/network.c b/src/network.c
index a77a28e..7088398 100644
--- a/src/network.c
+++ b/src/network.c
@@ -19,6 +19,9 @@
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
+    #ifdef GPU
+    net.input_cl = 0;
+    #endif
     return net;
 }
 
@@ -40,17 +43,6 @@
     fprintf(fp, "data=");
     for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
     for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    /*
-    int j,k;
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->n; ++i){
-        for(j = l->c-1; j >= 0; --j){
-            for(k = 0; k < l->size*l->size; ++k){
-                fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
-            }
-        }
-    }
-    */
     fprintf(fp, "\n\n");
 }
 void print_connected_cfg(FILE *fp, connected_layer *l, int first)
@@ -121,18 +113,29 @@
     fclose(fp);
 }
 
-void forward_network(network net, float *input)
+#ifdef GPU
+void forward_network(network net, float *input, int train)
 {
+    cl_setup();
+    size_t size = get_network_input_size(net);
+    if(!net.input_cl){
+        net.input_cl = clCreateBuffer(cl.context,
+            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
+        check_error(cl);
+    }
+    cl_write_array(net.input_cl, input, size);
+    cl_mem input_cl = net.input_cl;
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer(layer, input);
+            forward_convolutional_layer_gpu(layer, input_cl);
+            input_cl = layer.output_cl;
             input = layer.output;
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
+            forward_connected_layer(layer, input, train);
             input = layer.output;
         }
         else if(net.types[i] == SOFTMAX){
@@ -153,6 +156,41 @@
     }
 }
 
+#else
+
+void forward_network(network net, float *input, int train)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            forward_convolutional_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            forward_connected_layer(layer, input, train);
+            input = layer.output;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            forward_maxpool_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
+    }
+}
+#endif
+
 void update_network(network net, float step, float momentum, float decay)
 {
     int i;
@@ -230,10 +268,13 @@
     float sum = 0;
     float *delta = get_network_delta(net);
     float *out = get_network_output(net);
-    int i, k = get_network_output_size(net);
-    for(i = 0; i < k; ++i){
-        //printf("%f, ", out[i]);
+    int i;
+    for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
+        //if(i %get_network_output_size(net) == 0) printf("\n");
+        //printf("%5.2f %5.2f, ", out[i], truth[i]);
+        //if(i == get_network_output_size(net)) printf("\n");
         delta[i] = truth[i] - out[i];
+        //printf("%.10f, ", out[i]);
         sum += delta[i]*delta[i];
     }
     //printf("\n");
@@ -263,9 +304,7 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer);
-            //learn_convolutional_layer(layer);
-            if(i != 0) backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -281,8 +320,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(layer, prev_input);
-            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+            backward_connected_layer(layer, prev_input, prev_delta);
         }
     }
     return error;
@@ -290,7 +328,7 @@
 
 float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
 {
-    forward_network(net, x);
+    forward_network(net, x, 1);
     //int class = get_predicted_class_network(net);
     float error = backward_network(net, x, y);
     update_network(net, step, momentum, decay);
@@ -300,20 +338,38 @@
 
 float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
 {
-    int i;
-    float error = 0;
-    int correct = 0;
-    int pos = 0;
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i,j;
+    float sum = 0;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
+            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
+        }
+        float err = train_network_datum(net, X, y, step, momentum, decay);
+        sum += err;
+        //train_network_datum(net, X, y, step, momentum, decay);
+        /*
         float *y = d.y.vals[index];
         int class = get_predicted_class_network(net);
         correct += (y[class]?1:0);
-        if(y[1]){
-            error += err;
-            ++pos;
+        */
+
+/*
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", y[j]);
         }
+        printf("\n");
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", get_network_output(net)[j]);
+        }
+        printf("\n");
+        printf("\n");
+        */
 
 
         //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
@@ -322,24 +378,26 @@
         //}
     }
     //printf("Accuracy: %f\n",(float) correct/n);
-    return error/pos;
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
 }
 float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
 {
-    int i;
-    int correct = 0;
+    int i,j;
+    float sum = 0;
+    int batch = 2;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float *x = d.X.vals[index];
-        float *y = d.y.vals[index];
-        forward_network(net, x);
-        int class = get_predicted_class_network(net);
-        backward_network(net, x, y);
-        correct += (y[class]?1:0);
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            float *x = d.X.vals[index];
+            float *y = d.y.vals[index];
+            forward_network(net, x, 1);
+            sum += backward_network(net, x, y);
+        }
+        update_network(net, step, momentum, decay);
     }
-    update_network(net, step, momentum, decay);
-    return (float)correct/n;
-
+    return (float)sum/(n*batch);
 }
 
 
@@ -359,6 +417,27 @@
     fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+int get_network_input_size_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.inputs;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
+    return 0;
+}
+
 int get_network_output_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -382,36 +461,6 @@
     return 0;
 }
 
-/*
-   int resize_network(network net, int h, int w, int c)
-   {
-   int i;
-   for (i = 0; i < net.n; ++i){
-   if(net.types[i] == CONVOLUTIONAL){
-   convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-   layer->h = h;
-   layer->w = w;
-   layer->c = c;
-   image output = get_convolutional_image(*layer);
-   h = output.h;
-   w = output.w;
-   c = output.c;
-   }
-   else if(net.types[i] == MAXPOOL){
-   maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-   layer->h = h;
-   layer->w = w;
-   layer->c = c;
-   image output = get_maxpool_image(*layer);
-   h = output.h;
-   w = output.w;
-   c = output.c;
-   }
-   }
-   return 0;
-   }
- */
-
 int resize_network(network net, int h, int w, int c)
 {
     int i;
@@ -450,6 +499,11 @@
     return get_network_output_size_layer(net, i);
 }
 
+int get_network_input_size(network net)
+{
+    return get_network_input_size_layer(net, 0);
+}
+
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -497,22 +551,31 @@
 
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input);
+    forward_network(net, input, 0);
     float *out = get_network_output(net);
     return out;
 }
 
 matrix network_predict_data(network net, data test)
 {
-    int i,j;
+    int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    for(i = 0; i < test.X.rows; ++i){
-        float *out = network_predict(net, test.X.vals[i]);
-        for(j = 0; j < k; ++j){
-            pred.vals[i][j] = out[j];
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
         }
     }
+    free(X);
     return pred;   
 }
 

--
Gitblit v1.10.0