From b4b729a15e577c68f64e0ac69fb299de6f5f706c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 17 Apr 2014 16:58:24 +0000
Subject: [PATCH] Merge branch 'master' of pjreddie.com:jnet

---
 src/gemm.cl               |   72 +
 src/mini_blas.c           |  148 ++
 Makefile                  |   13 
 src/convolutional_layer.h |    6 
 src/image.c               |  170 +++
 src/cpu_gemm.c            |   86 +
 src/mini_blas.h           |   13 
 src/tests.c               | 1226 +++++++++++++++------------
 src/image.h               |   13 
 src/maxpool_layer.c       |   13 
 src/network.c             |  153 ++
 src/maxpool_layer.h       |    4 
 src/normalization_layer.c |   96 ++
 src/normalization_layer.h |   26 
 src/softmax_layer.h       |    3 
 src/network.h             |    8 
 src/connected_layer.c     |   19 
 src/connected_layer.h     |    3 
 src/data.c                |   24 
 src/softmax_layer.c       |   41 
 src/data.h                |    1 
 /dev/null                 |    0 
 src/convolutional_layer.c |  151 +-
 src/opencl.h              |   21 
 src/gpu_gemm.c            |  153 +++
 src/parser.c              |   54 +
 src/opencl.c              |   77 +
 27 files changed, 1,873 insertions(+), 721 deletions(-)

diff --git a/Makefile b/Makefile
index 4c1bb14..640f308 100644
--- a/Makefile
+++ b/Makefile
@@ -1,18 +1,21 @@
 CC=gcc
 COMMON=-Wall `pkg-config --cflags opencv`
 UNAME = $(shell uname)
+OPTS=-O3
 ifeq ($(UNAME), Darwin)
-COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
+COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
+LDFLAGS= -framework OpenCL
 else
-COMMON += -march=native
+OPTS+= -march=native -flto
+LDFLAGS= -lOpenCL
 endif
-CFLAGS= $(COMMON) -Ofast -flto
+CFLAGS= $(COMMON) $(OPTS)
 #CFLAGS= $(COMMON) -O0 -g 
-LDFLAGS=`pkg-config --libs opencv` -lm
+LDFLAGS+=`pkg-config --libs opencv` -lm
 VPATH=./src/
 EXEC=cnn
 
-OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o
+OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o opencl.o gpu_gemm.o cpu_gemm.o normalization_layer.o
 
 all: $(EXEC)
 
diff --git a/dog.jpg b/dog.jpg
deleted file mode 100644
index 3b9f7ab..0000000
--- a/dog.jpg
+++ /dev/null
Binary files differ
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 07fad69..16a39be 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -7,16 +7,17 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
 {
     fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
     layer->inputs = inputs;
     layer->outputs = outputs;
+    layer->batch=batch;
 
-    layer->output = calloc(outputs, sizeof(float*));
-    layer->delta = calloc(outputs, sizeof(float*));
+    layer->output = calloc(batch*outputs, sizeof(float*));
+    layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
     layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
@@ -78,14 +79,14 @@
 {
     int i;
     memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
-    int m = 1;
+    int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
     float *a = input;
     float *b = layer.weights;
     float *c = layer.output;
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    for(i = 0; i < layer.outputs; ++i){
+    for(i = 0; i < layer.outputs*layer.batch; ++i){
         layer.output[i] = activate(layer.output[i], layer.activation);
     }
     //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
@@ -94,12 +95,12 @@
 void learn_connected_layer(connected_layer layer, float *input)
 {
     int i;
-    for(i = 0; i < layer.outputs; ++i){
+    for(i = 0; i < layer.outputs*layer.batch; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
-        layer.bias_updates[i] += layer.delta[i];
+        layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
     }
     int m = layer.inputs;
-    int k = 1;
+    int k = layer.batch;
     int n = layer.outputs;
     float *a = input;
     float *b = layer.delta;
@@ -113,7 +114,7 @@
 
     int m = layer.inputs;
     int k = layer.outputs;
-    int n = 1;
+    int n = layer.batch;
 
     float *a = layer.weights;
     float *b = layer.delta;
diff --git a/src/connected_layer.h b/src/connected_layer.h
index 4b17c59..83ae914 100644
--- a/src/connected_layer.h
+++ b/src/connected_layer.h
@@ -4,6 +4,7 @@
 #include "activations.h"
 
 typedef struct{
+    int batch;
     int inputs;
     int outputs;
     float *weights;
@@ -25,7 +26,7 @@
 
 } connected_layer;
 
-connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation);
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
 
 void forward_connected_layer(connected_layer layer, float *input);
 void backward_connected_layer(connected_layer layer, float *input, float *delta);
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 8d8efc1..6916eeb 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -31,7 +31,7 @@
     return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
     size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
@@ -40,6 +40,7 @@
     layer->w = w;
     layer->c = c;
     layer->n = n;
+    layer->batch = batch;
     layer->stride = stride;
     layer->size = size;
 
@@ -56,12 +57,12 @@
         //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = 0;
     }
-    int out_h = (h-size)/stride + 1;
-    int out_w = (w-size)/stride + 1;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
-    layer->output = calloc(out_h * out_w * n, sizeof(float));
-    layer->delta  = calloc(out_h * out_w * n, sizeof(float));
+    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->activation = activation;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -70,21 +71,39 @@
     return layer;
 }
 
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+{
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+}
+
 void forward_convolutional_layer(const convolutional_layer layer, float *in)
 {
     int i;
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
-    int n = ((layer.h-layer.size)/layer.stride + 1)*
-            ((layer.w-layer.size)/layer.stride + 1);
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
 
     memset(layer.output, 0, m*n*sizeof(float));
 
     float *a = layer.filters;
     float *b = layer.col_image;
     float *c = layer.output;
-
-    im2col_cpu(in,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
+    }
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 
     for(i = 0; i < m*n; ++i){
@@ -97,9 +116,10 @@
 void gradient_delta_convolutional_layer(convolutional_layer layer)
 {
     int i;
-    int size = convolutional_out_height(layer)
-                *convolutional_out_width(layer)
-                *layer.n;
+    int size = convolutional_out_height(layer)*
+                convolutional_out_width(layer)*
+                layer.n*
+                layer.batch;
     for(i = 0; i < size; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
     }
@@ -107,15 +127,17 @@
 
 void learn_bias_convolutional_layer(convolutional_layer layer)
 {
-    int i,j;
+    int i,j,b;
     int size = convolutional_out_height(layer)
                 *convolutional_out_width(layer);
-    for(i = 0; i < layer.n; ++i){
-        float sum = 0;
-        for(j = 0; j < size; ++j){
-            sum += layer.delta[j+i*size];
+    for(b = 0; b < layer.batch; ++b){
+        for(i = 0; i < layer.n; ++i){
+            float sum = 0;
+            for(j = 0; j < size; ++j){
+                sum += layer.delta[j+size*(i+b*layer.n)];
+            }
+            layer.bias_updates[i] += sum/size;
         }
-        layer.bias_updates[i] += sum/size;
     }
 }
 
@@ -125,8 +147,9 @@
     learn_bias_convolutional_layer(layer);
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
-    int k = ((layer.h-layer.size)/layer.stride + 1)*
-            ((layer.w-layer.size)/layer.stride + 1);
+    int k = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
 
     float *a = layer.delta;
     float *b = layer.col_image;
@@ -137,10 +160,12 @@
 
 void backward_convolutional_layer(convolutional_layer layer, float *delta)
 {
+    int i;
     int m = layer.size*layer.size*layer.c;
     int k = layer.n;
-    int n = ((layer.h-layer.size)/layer.stride + 1)*
-            ((layer.w-layer.size)/layer.stride + 1);
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
 
     float *a = layer.filters;
     float *b = layer.delta;
@@ -150,8 +175,10 @@
     memset(c, 0, m*n*sizeof(float));
     gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
 
-    memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float));
-    col2im_cpu(c,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta);
+    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    for(i = 0; i < layer.batch; ++i){
+        col2im_cpu(c+i*n/layer.batch,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta+i*n/layer.batch);
+    }
 }
 
 void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
@@ -225,7 +252,7 @@
 
 void test_convolutional_layer()
 {
-    convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR);
+    convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
     float input[] =    {1,2,3,4,
                         5,6,7,8,
                         9,10,11,12,
@@ -258,52 +285,48 @@
     return float_to_image(h,w,c,layer.filters+i*h*w*c);
 }
 
-void visualize_convolutional_layer(convolutional_layer layer, char *window)
+image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
 {
-    int color = 1;
-    int border = 1;
-    int h,w,c;
-    int size = layer.size;
-    h = size;
-    w = (size + border) * layer.n - border;
-    c = layer.c;
-    if(c != 3 || !color){
-        h = (h+border)*c - border;
-        c = 1;
+    image *filters = calloc(layer.n, sizeof(image));
+    int i,j,k,c;
+    if(!prev_filters){
+        for(i = 0; i < layer.n; ++i){
+            filters[i] = copy_image(get_convolutional_filter(layer, i));
+        }
     }
-
-    image filters = make_image(h,w,c);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        int w_offset = i*(size+border);
-        image k = get_convolutional_filter(layer, i);
-        //printf("%f ** ", layer.biases[i]);
-        //print_image(k);
-        image copy = copy_image(k);
-        normalize_image(copy);
-        for(j = 0; j < k.c; ++j){
-            //set_pixel(copy,0,0,j,layer.biases[i]);
-        }
-        if(c == 3 && color){
-            embed_image(copy, filters, 0, w_offset);
-        }
-        else{
-            for(j = 0; j < k.c; ++j){
-                int h_offset = j*(size+border);
-                image layer = get_image_layer(k, j);
-                embed_image(layer, filters, h_offset, w_offset);
-                free_image(layer);
+    else{
+        image base = prev_filters[0];
+        for(i = 0; i < layer.n; ++i){
+            image filter = get_convolutional_filter(layer, i);
+            filters[i] = make_image(base.h, base.w, base.c);
+            for(j = 0; j < layer.size; ++j){
+                for(k = 0; k < layer.size; ++k){
+                    for(c = 0; c < layer.c; ++c){
+                        float weight = get_pixel(filter, j, k, c);
+                        image prev_filter = copy_image(prev_filters[c]);
+                        scale_image(prev_filter, weight);
+                        add_into_image(prev_filter, filters[i], 0,0);
+                        free_image(prev_filter);
+                    }
+                }
             }
         }
-        free_image(copy);
     }
-    image delta = get_convolutional_delta(layer);
+    return filters;
+}
+
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+{
+    image *single_filters = weighted_sum_filters(layer, 0);
+    show_images(single_filters, layer.n, window);
+
+    image delta = get_convolutional_image(layer);
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
-    sprintf(buff, "%s: Delta", window);
+    sprintf(buff, "%s: Output", window);
     show_image(dc, buff);
+    save_image(dc, buff);
     free_image(dc);
-    show_image(filters, window);
-    free_image(filters);
+    return single_filters;
 }
 
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index 8ca69b1..7404def 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -5,6 +5,7 @@
 #include "activations.h"
 
 typedef struct {
+    int batch;
     int h,w,c;
     int n;
     int size;
@@ -24,11 +25,12 @@
     ACTIVATION activation;
 } convolutional_layer;
 
-convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
 void forward_convolutional_layer(const convolutional_layer layer, float *in);
 void learn_convolutional_layer(convolutional_layer layer);
 void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay);
-void visualize_convolutional_layer(convolutional_layer layer, char *window);
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
 
 void backward_convolutional_layer(convolutional_layer layer, float *delta);
 
diff --git a/src/cpu_gemm.c b/src/cpu_gemm.c
new file mode 100644
index 0000000..437b39a
--- /dev/null
+++ b/src/cpu_gemm.c
@@ -0,0 +1,86 @@
+#include "mini_blas.h"
+
+void cpu_gemm_nn(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(k = 0; k < K; ++k){
+            register float A_PART = ALPHA*A[i*lda+k];
+            for(j = 0; j < N; ++j){
+                C[i*ldc+j] += A_PART*B[k*ldb+j];
+            }
+        }
+    }
+}
+
+void cpu_gemm_nt(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(j = 0; j < N; ++j){
+            register float sum = 0;
+            for(k = 0; k < K; ++k){
+                sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
+            }
+            C[i*ldc+j] += sum;
+        }
+    }
+}
+
+void cpu_gemm_tn(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(k = 0; k < K; ++k){
+            register float A_PART = ALPHA*A[k*lda+i];
+            for(j = 0; j < N; ++j){
+                C[i*ldc+j] += A_PART*B[k*ldb+j];
+            }
+        }
+    }
+}
+void cpu_gemm_tt(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    int i,j,k;
+    for(i = 0; i < M; ++i){
+        for(j = 0; j < N; ++j){
+            for(k = 0; k < K; ++k){
+                C[i*ldc+j] += ALPHA*A[i+k*lda]*B[k+j*ldb];
+            }
+        }
+    }
+}
+
+
+void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    // Assume beta = 1 LULZ
+    if(!TA && !TB)
+        cpu_gemm_nn( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+    else if(TA && !TB)
+        cpu_gemm_tn( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+    else if(!TA && TB)
+        cpu_gemm_nt( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+    else
+        cpu_gemm_tt( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
+}
diff --git a/src/data.c b/src/data.c
index f44f5da..39ece11 100644
--- a/src/data.c
+++ b/src/data.c
@@ -119,6 +119,30 @@
     return d;
 }
 
+data load_cifar10_data(char *filename)
+{
+    data d;
+    d.shallow = 0;
+    unsigned long i,j;
+    matrix X = make_matrix(10000, 3072);
+    matrix y = make_matrix(10000, 10);
+    d.X = X;
+    d.y = y;
+
+    FILE *fp = fopen(filename, "rb");
+    for(i = 0; i < 10000; ++i){
+        unsigned char bytes[3073];
+        fread(bytes, 1, 3073, fp);
+        int class = bytes[0];
+        y.vals[i][class] = 1;
+        for(j = 0; j < X.cols; ++j){
+            X.vals[i][j] = (double)bytes[j+1];
+        }
+    }
+    fclose(fp);
+    return d;
+}
+
 void randomize_data(data d)
 {
     int i;
diff --git a/src/data.h b/src/data.h
index 4df0c68..dfbbf72 100644
--- a/src/data.h
+++ b/src/data.h
@@ -17,6 +17,7 @@
                                     char **labels, int k, int h, int w);
 data load_data_image_pathfile_random(char *filename, int n, char **labels, 
                                         int k, int h, int w);
+data load_cifar10_data(char *filename);
 list *get_paths(char *filename);
 data load_categorical_data_csv(char *filename, int target, int k);
 void normalize_data_rows(data d);
diff --git a/src/gemm.cl b/src/gemm.cl
new file mode 100644
index 0000000..7c868f4
--- /dev/null
+++ b/src/gemm.cl
@@ -0,0 +1,72 @@
+
+
+__kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    __global float *A, int lda, 
+                    __global float *B, int ldb,
+                    float BETA,
+                    __global float *C, int ldc)
+{
+    __local float Asub[BLOCK][BLOCK];
+    __local float Bsub[BLOCK][BLOCK];
+
+    float val = 0;
+    
+    int row_block = get_group_id(0);
+    int col_block = get_group_id(1);
+
+    int sub_row = get_local_id(0);
+    int sub_col = get_local_id(1);
+
+    int row = row_block*BLOCK + sub_row;
+    int col = col_block*BLOCK + sub_col;
+
+    int i,j;
+    for(i = 0; i < K; i += BLOCK){
+        int arow = row_block*BLOCK + sub_row;
+        int acol = i + sub_col;
+
+        int brow = i + sub_row;
+        int bcol = col_block*BLOCK + sub_col;
+
+        Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol];
+        Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol];
+
+        barrier(CLK_LOCAL_MEM_FENCE);
+
+        for(j = 0; j < BLOCK && i+j<K; ++j){
+            val += Asub[sub_row][j]*Bsub[j][sub_col];
+        }
+        barrier(CLK_LOCAL_MEM_FENCE);
+    }
+
+    if(row < M && col < N){
+        C[row*ldc+col] = val;
+    }
+}
+
+/*
+__kernel void gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    __global float *A, int lda, 
+                    __global float *B, int ldb,
+                    float BETA,
+                    __global float *C, int ldc)
+{
+    float val = 0;
+    int row = get_global_id(0);
+    int col = get_global_id(1);
+    int i;
+    for(i = 0; i < K; ++i){
+        float Aval;
+        if(TA) Aval = A[i*lda+row]; 
+        else Aval = A[row*lda+i];
+
+        float Bval;
+        if(TB) Bval = B[col*ldb+i];
+        else Bval = B[col+i*ldb];
+
+        val += Aval*Bval;
+    }
+    C[row*ldc+col] = val;
+}
+
+*/
diff --git a/src/gpu_gemm.c b/src/gpu_gemm.c
new file mode 100644
index 0000000..26bb3fe
--- /dev/null
+++ b/src/gpu_gemm.c
@@ -0,0 +1,153 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <math.h>
+
+#include "opencl.h"
+#include "mini_blas.h"
+
+#define STR_HELPER(x) #x
+#define STR(x) STR_HELPER(x)
+
+#define BLOCK 8
+
+cl_kernel get_gemm_kernel()
+{
+    static int init = 0;
+    static cl_kernel gemm_kernel;
+    if(!init){
+        gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) );
+        init = 1;
+    }
+    return gemm_kernel;
+}
+
+void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    cl_setup();
+    cl_kernel gemm_kernel = get_gemm_kernel();
+    cl_context context = cl.context;
+    cl_command_queue queue = cl.queue;
+
+    size_t size = sizeof(float)*(TA ? lda*K:lda*M);
+    cl_mem A_gpu = clCreateBuffer(context,
+            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, A, &cl.error);
+    check_error(cl);
+
+    size = sizeof(float)*(TB ? ldb*N:ldb*K);
+    cl_mem B_gpu = clCreateBuffer(context,
+            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, B, &cl.error);
+    check_error(cl);
+
+    size = sizeof(float)*(ldc*M);
+    cl_mem C_gpu = clCreateBuffer(context,
+            CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, C, &cl.error);
+    check_error(cl);
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
+    check_error(cl);
+
+    const size_t global_size[] = {ceil((float)M/BLOCK)*BLOCK, ceil((float)N/BLOCK)*BLOCK};
+    const size_t local_size[] = {BLOCK, BLOCK};
+    //printf("%zd %zd %zd %zd\n", global_size[0], global_size[1], local_size[0], local_size[1]);
+
+    clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
+    check_error(cl);
+    clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
+    check_error(cl);
+    
+    clReleaseMemObject(A_gpu);
+    clReleaseMemObject(B_gpu);
+    clReleaseMemObject(C_gpu);
+
+}
+
+/*
+cl_kernel get_gemm_kernel_slow()
+{
+    static int init = 0;
+    static cl_kernel gemm_kernel;
+    if(!init){
+        gemm_kernel = get_kernel("src/gemm.cl", "gemm_slow");
+        init = 1;
+    }
+    return gemm_kernel;
+}
+
+void gpu_gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
+{
+    cl_setup();
+    cl_kernel gemm_kernel = get_gemm_kernel_slow();
+    cl_context context = cl.context;
+    cl_command_queue queue = cl.queue;
+
+    size_t size = sizeof(float)*(TA ? lda*K:lda*M);
+    cl_mem A_gpu = clCreateBuffer(context,
+            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, A, &cl.error);
+    check_error(cl);
+
+    size = sizeof(float)*(TB ? ldb*N:ldb*K);
+    cl_mem B_gpu = clCreateBuffer(context,
+            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, B, &cl.error);
+    check_error(cl);
+
+    size = sizeof(float)*(ldc*M);
+    cl_mem C_gpu = clCreateBuffer(context,
+            CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
+            size, C, &cl.error);
+    check_error(cl);
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
+    cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
+    check_error(cl);
+
+    const size_t global_size[] = {M, N};
+
+    clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, 0, 0, 0, 0);
+    clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
+    
+    clReleaseMemObject(A_gpu);
+    clReleaseMemObject(B_gpu);
+    clReleaseMemObject(C_gpu);
+
+}
+*/
diff --git a/src/image.c b/src/image.c
index 1667977..453919f 100644
--- a/src/image.c
+++ b/src/image.c
@@ -113,6 +113,7 @@
     return copy;
 }
 
+
 void show_image(image p, char *name)
 {
     int i,j,k;
@@ -136,7 +137,7 @@
         }
     }
     free_image(copy);
-    if(disp->height < 500 || disp->width < 500){
+    if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
         int w = 1500;
         int h = w*p.h/p.w;
         if(h > 1000){
@@ -152,6 +153,30 @@
     cvReleaseImage(&disp);
 }
 
+void save_image(image p, char *name)
+{
+    int i,j,k;
+    image copy = copy_image(p);
+    normalize_image(copy);
+
+    char buff[256];
+    //sprintf(buff, "%s (%d)", name, windows);
+    sprintf(buff, "%s.png", name);
+
+    IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
+    int step = disp->widthStep;
+    for(i = 0; i < p.h; ++i){
+        for(j = 0; j < p.w; ++j){
+            for(k= 0; k < p.c; ++k){
+                disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
+            }
+        }
+    }
+    free_image(copy);
+    cvSaveImage(buff, disp,0);
+    cvReleaseImage(&disp);
+}
+
 void show_image_layers(image p, char *name)
 {
     int i;
@@ -227,7 +252,19 @@
     return out;
 }
 
-void add_scalar_image(image m, float s)
+void add_into_image(image src, image dest, int h, int w)
+{
+    int i,j,k;
+    for(k = 0; k < src.c; ++k){
+        for(i = 0; i < src.h; ++i){
+            for(j = 0; j < src.w; ++j){
+                add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k));
+            }
+        }
+    }
+}
+
+void translate_image(image m, float s)
 {
     int i;
     for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
@@ -404,6 +441,20 @@
     }
     return out;
 }
+image get_sub_image(image m, int h, int w, int dh, int dw)
+{
+    image out = make_image(dh, dw, m.c);
+    int i,j,k;
+    for(k = 0; k < out.c; ++k){
+        for(i = 0; i < dh; ++i){
+            for(j = 0; j < dw; ++j){
+                float val = get_pixel(m, h+i, w+j, k);
+                set_pixel(out, i, j, k, val);
+            }
+        }
+    }
+    return out;
+}
 
 float get_pixel(image m, int x, int y, int c)
 {
@@ -594,6 +645,121 @@
     for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]);
     printf("\n");
 }
+image collapse_images_vert(image *ims, int n)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    w = ims[0].w;
+    h = (ims[0].h + border) * n - border;
+    c = ims[0].c;
+    if(c != 3 || !color){
+        w = (w+border)*c - border;
+        c = 1;
+    }
+
+    image filters = make_image(h,w,c);
+    int i,j;
+    for(i = 0; i < n; ++i){
+        int h_offset = i*(ims[0].h+border);
+        image copy = copy_image(ims[i]);
+        //normalize_image(copy);
+        if(c == 3 && color){
+            embed_image(copy, filters, h_offset, 0);
+        }
+        else{
+            for(j = 0; j < copy.c; ++j){
+                int w_offset = j*(ims[0].w+border);
+                image layer = get_image_layer(copy, j);
+                embed_image(layer, filters, h_offset, w_offset);
+                free_image(layer);
+            }
+        }
+        free_image(copy);
+    }
+    return filters;
+} 
+
+image collapse_images_horz(image *ims, int n)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    int size = ims[0].h;
+    h = size;
+    w = (ims[0].w + border) * n - border;
+    c = ims[0].c;
+    if(c != 3 || !color){
+        h = (h+border)*c - border;
+        c = 1;
+    }
+
+    image filters = make_image(h,w,c);
+    int i,j;
+    for(i = 0; i < n; ++i){
+        int w_offset = i*(size+border);
+        image copy = copy_image(ims[i]);
+        //normalize_image(copy);
+        if(c == 3 && color){
+            embed_image(copy, filters, 0, w_offset);
+        }
+        else{
+            for(j = 0; j < copy.c; ++j){
+                int h_offset = j*(size+border);
+                image layer = get_image_layer(copy, j);
+                embed_image(layer, filters, h_offset, w_offset);
+                free_image(layer);
+            }
+        }
+        free_image(copy);
+    }
+    return filters;
+} 
+
+void show_images(image *ims, int n, char *window)
+{
+    image m = collapse_images_vert(ims, n);
+    save_image(m, window);
+    show_image(m, window);
+    free_image(m);
+}
+
+image grid_images(image **ims, int h, int w)
+{
+    int i;
+    image *rows = calloc(h, sizeof(image));
+    for(i = 0; i < h; ++i){
+        rows[i] = collapse_images_horz(ims[i], w);
+    }
+    image out = collapse_images_vert(rows, h);
+    for(i = 0; i < h; ++i){
+        free_image(rows[i]);
+    }
+    free(rows);
+    return out;
+}
+
+void test_grid()
+{
+    int i,j;
+    int num = 3;
+    int topk = 3;
+    image **vizs = calloc(num, sizeof(image*));
+    for(i = 0; i < num; ++i){
+        vizs[i] = calloc(topk, sizeof(image));
+        for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3);
+    }
+    image grid = grid_images(vizs, num, topk);
+    save_image(grid, "Test Grid");
+    free_image(grid);
+}
+
+void show_images_grid(image **ims, int h, int w, char *window)
+{
+    image out = grid_images(ims, h, w);
+    show_image(out, window);
+    free_image(out);
+}
 
 void free_image(image m)
 {
diff --git a/src/image.h b/src/image.h
index 9f7d74d..fe25742 100644
--- a/src/image.h
+++ b/src/image.h
@@ -1,6 +1,7 @@
 #ifndef IMAGE_H
 #define IMAGE_H
 
+
 #include "opencv2/highgui/highgui_c.h"
 #include "opencv2/imgproc/imgproc_c.h"
 typedef struct {
@@ -12,7 +13,7 @@
 
 image image_distance(image a, image b);
 void scale_image(image m, float s);
-void add_scalar_image(image m, float s);
+void translate_image(image m, float s);
 void normalize_image(image p);
 void z_normalize_image(image p);
 void threshold_image(image p, float t);
@@ -21,11 +22,20 @@
 void subtract_image(image a, image b);
 float avg_image_layer(image m, int l);
 void embed_image(image source, image dest, int h, int w);
+void add_into_image(image src, image dest, int h, int w);
 image collapse_image_layers(image source, int border);
+image collapse_images_horz(image *ims, int n);
+image collapse_images_vert(image *ims, int n);
+image get_sub_image(image m, int h, int w, int dh, int dw);
 
 void show_image(image p, char *name);
+void save_image(image p, char *name);
+void show_images(image *ims, int n, char *window);
 void show_image_layers(image p, char *name);
 void show_image_collapsed(image p, char *name);
+void show_images_grid(image **ims, int h, int w, char *window);
+void test_grid();
+image grid_images(image **ims, int h, int w);
 void print_image(image m);
 
 image make_image(int h, int w, int c);
@@ -39,6 +49,7 @@
 
 float get_pixel(image m, int x, int y, int c);
 float get_pixel_extend(image m, int x, int y, int c);
+void add_pixel(image m, int x, int y, int c, float val);
 void set_pixel(image m, int x, int y, int c, float val);
 
 image get_image_layer(image m, int l);
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index 8c409b9..413816a 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -17,10 +17,12 @@
     return float_to_image(h,w,c,layer.delta);
 }
 
-maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
+maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride)
 {
+    c = c*batch;
     fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride);
     maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
+    layer->batch = batch;
     layer->h = h;
     layer->w = w;
     layer->c = c;
@@ -30,6 +32,15 @@
     return layer;
 }
 
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
+{
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
+    layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
+}
+
 void forward_maxpool_layer(const maxpool_layer layer, float *in)
 {
     image input = float_to_image(layer.h, layer.w, layer.c, in);
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 27d6f55..92d41e6 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -4,6 +4,7 @@
 #include "image.h"
 
 typedef struct {
+    int batch;
     int h,w,c;
     int stride;
     float *delta;
@@ -11,7 +12,8 @@
 } maxpool_layer;
 
 image get_maxpool_image(maxpool_layer layer);
-maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride);
+maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride);
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
 void forward_maxpool_layer(const maxpool_layer layer, float *in);
 void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta);
 
diff --git a/src/mini_blas.c b/src/mini_blas.c
index 262798b..bac3e22 100644
--- a/src/mini_blas.c
+++ b/src/mini_blas.c
@@ -3,6 +3,8 @@
 #include <stdio.h>
 #include <math.h>
 #include <time.h>
+#include <string.h>
+#include "mini_blas.h"
 
 void pm(int M, int N, float *A)
 {
@@ -17,42 +19,12 @@
 }
 
 void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
-                    float *A, int lda, 
-                    float *B, int ldb,
-                    float BETA,
-                    float *C, int ldc)
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc)
 {
-    // Assume beta = 1 LULZ
-    int i,j,k;
-    if(TB && !TA){
-        for(i = 0; i < M; ++i){
-            for(j = 0; j < N; ++j){
-                register float sum = 0;
-                for(k = 0; k < K; ++k){
-                    sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
-                }
-                C[i*ldc+j] += sum;
-            }
-        }
-    }else if(TA && !TB){
-        for(i = 0; i < M; ++i){
-            for(k = 0; k < K; ++k){
-                register float A_PART = ALPHA*A[k*lda+i];
-                for(j = 0; j < N; ++j){
-                    C[i*ldc+j] += A_PART*B[k*ldb+j];
-                }
-            }
-        }
-    }else{
-        for(i = 0; i < M; ++i){
-            for(k = 0; k < K; ++k){
-                register float A_PART = ALPHA*A[i*lda+k];
-                for(j = 0; j < N; ++j){
-                    C[i*ldc+j] += A_PART*B[k*ldb+j];
-                }
-            }
-        }
-    }
+    gpu_gemm( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
 }
 
 void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
@@ -150,16 +122,26 @@
 
 void time_random_matrix(int TA, int TB, int m, int k, int n)
 {
-    float *a = random_matrix(m,k);
-    float *b = random_matrix(k,n);
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
     float *c = random_matrix(m,n);
     int i;
     clock_t start = clock(), end;
     for(i = 0; i<1000; ++i){
-        gemm(TA,TB,m,n,k,1,a,k,b,n,1,c,n);
+        cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
     }
     end = clock();
     printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+    free(a);
+    free(b);
+    free(c);
 }
 
 void test_blas()
@@ -167,9 +149,97 @@
     time_random_matrix(0,0,100,100,100); 
     time_random_matrix(1,0,100,100,100); 
     time_random_matrix(0,1,100,100,100); 
+    time_random_matrix(1,1,100,100,100); 
 
-    time_random_matrix(0,1,1000,100,100); 
+    time_random_matrix(0,0,1000,100,100); 
     time_random_matrix(1,0,1000,100,100); 
+    time_random_matrix(0,1,1000,100,100); 
+    time_random_matrix(1,1,1000,100,100); 
+
 
 }
 
+void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
+{
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i<1000; ++i){
+        gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+    }
+    end = clock();
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+    free(a);
+    free(b);
+    free(c);
+}
+
+void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
+{
+    srand(0);
+    float *a;
+    if(!TA) a = random_matrix(m,k);
+    else a = random_matrix(k,m);
+    int lda = (!TA)?k:m;
+    float *b;
+    if(!TB) b = random_matrix(k,n);
+    else b = random_matrix(n,k);
+    int ldb = (!TB)?n:k;
+
+    float *c = random_matrix(m,n);
+    float *c_gpu = random_matrix(m,n);
+    memset(c, 0, m*n*sizeof(float));
+    memset(c_gpu, 0, m*n*sizeof(float));
+    int i;
+        //pm(m,k,b);
+        gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
+        //pm(m, n, c_gpu);
+        cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
+        //pm(m, n, c);
+    double sse = 0;
+    for(i = 0; i < m*n; ++i) {
+        //printf("%f %f\n", c[i], c_gpu[i]);
+        sse += pow(c[i]-c_gpu[i], 2);
+    }
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n));
+    free(a);
+    free(b);
+    free(c);
+}
+
+void test_gpu_blas()
+{
+    test_gpu_accuracy(0,0,17,10,10); 
+    test_gpu_accuracy(1,0,17,10,10); 
+    test_gpu_accuracy(0,1,17,10,10); 
+    test_gpu_accuracy(1,1,17,10,10); 
+
+    test_gpu_accuracy(0,0,1000,10,100); 
+    test_gpu_accuracy(1,0,1000,10,100); 
+    test_gpu_accuracy(0,1,1000,10,100); 
+    test_gpu_accuracy(1,1,1000,10,100); 
+
+    time_gpu_random_matrix(0,0,1000,1000,100); 
+    time_random_matrix(0,0,1000,1000,100); 
+
+    time_gpu_random_matrix(0,1,1000,1000,100); 
+    time_random_matrix(0,1,1000,1000,100); 
+
+    time_gpu_random_matrix(1,0,1000,1000,100); 
+    time_random_matrix(1,0,1000,1000,100); 
+
+    time_gpu_random_matrix(1,1,1000,1000,100); 
+    time_random_matrix(1,1,1000,1000,100); 
+
+}
+
+
diff --git a/src/mini_blas.h b/src/mini_blas.h
index ff82a60..56e4fa7 100644
--- a/src/mini_blas.h
+++ b/src/mini_blas.h
@@ -4,6 +4,7 @@
                     float *B, int ldb,
                     float BETA,
                     float *C, int ldc);
+float *random_matrix(int rows, int cols);
 void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix);
 void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix);
 void im2col_cpu(float* data_im, const int channels,
@@ -13,3 +14,15 @@
         const int height, const int width, const int ksize, const int stride,
         float* data_im);
 void test_blas();
+
+void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+        float *A, int lda, 
+        float *B, int ldb,
+        float BETA,
+        float *C, int ldc);
+void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
+                    float *A, int lda, 
+                    float *B, int ldb,
+                    float BETA,
+                    float *C, int ldc);
+void test_gpu_blas();
diff --git a/src/network.c b/src/network.c
index b2fc922..7d4b1fa 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,12 +8,14 @@
 #include "convolutional_layer.h"
 //#include "old_conv.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "softmax_layer.h"
 
-network make_network(int n)
+network make_network(int n, int batch)
 {
     network net;
     net.n = n;
+    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
@@ -25,10 +27,11 @@
 {
     int i;
     fprintf(fp, "[convolutional]\n");
-    if(first) fprintf(fp,   "height=%d\n"
+    if(first) fprintf(fp,   "batch=%d\n"
+                            "height=%d\n"
                             "width=%d\n"
                             "channels=%d\n",
-                            l->h, l->w, l->c);
+                            l->batch,l->h, l->w, l->c);
     fprintf(fp, "filters=%d\n"
                 "size=%d\n"
                 "stride=%d\n"
@@ -38,17 +41,28 @@
     fprintf(fp, "data=");
     for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
     for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    /*
+    int j,k;
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->n; ++i){
+        for(j = l->c-1; j >= 0; --j){
+            for(k = 0; k < l->size*l->size; ++k){
+                fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
+            }
+        }
+    }
+    */
     fprintf(fp, "\n\n");
 }
 void print_connected_cfg(FILE *fp, connected_layer *l, int first)
 {
     int i;
     fprintf(fp, "[connected]\n");
-    if(first) fprintf(fp, "input=%d\n", l->inputs);
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "output=%d\n"
-                "activation=%s\n",
-                l->outputs,
-                get_activation_string(l->activation));
+            "activation=%s\n",
+            l->outputs,
+            get_activation_string(l->activation));
     fprintf(fp, "data=");
     for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
     for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
@@ -58,17 +72,32 @@
 void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
 {
     fprintf(fp, "[maxpool]\n");
-    if(first) fprintf(fp,   "height=%d\n"
-                            "width=%d\n"
-                            "channels=%d\n",
-                            l->h, l->w, l->c);
+    if(first) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
     fprintf(fp, "stride=%d\n\n", l->stride);
 }
 
+void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
+{
+    fprintf(fp, "[localresponsenormalization]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\n"
+                "alpha=%g\n"
+                "beta=%g\n"
+                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+}
+
 void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
 {
     fprintf(fp, "[softmax]\n");
-    if(first) fprintf(fp, "input=%d\n", l->inputs);
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "\n");
 }
 
@@ -85,6 +114,8 @@
             print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
         else if(net.types[i] == MAXPOOL)
             print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
+        else if(net.types[i] == NORMALIZATION)
+            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
     }
@@ -115,6 +146,11 @@
             forward_maxpool_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
     }
 }
 
@@ -132,6 +168,9 @@
         else if(net.types[i] == SOFTMAX){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
+        else if(net.types[i] == NORMALIZATION){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer(layer, step, momentum, decay);
@@ -153,6 +192,9 @@
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return layer.output;
     }
     return 0;
 }
@@ -191,11 +233,11 @@
     float *out = get_network_output(net);
     int i, k = get_network_output_size(net);
     for(i = 0; i < k; ++i){
-        printf("%f, ", out[i]);
+        //printf("%f, ", out[i]);
         delta[i] = truth[i] - out[i];
         sum += delta[i]*delta[i];
     }
-    printf("\n");
+    //printf("\n");
     return sum;
 }
 
@@ -230,6 +272,10 @@
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
@@ -258,19 +304,26 @@
     int i;
     float error = 0;
     int correct = 0;
+    int pos = 0;
     for(i = 0; i < n; ++i){
         int index = rand()%d.X.rows;
-        error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
         float *y = d.y.vals[index];
         int class = get_predicted_class_network(net);
         correct += (y[class]?1:0);
+        if(y[1]){
+            error += err;
+            ++pos;
+        }
+
+
         //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
         //if((i+1)%10 == 0){
         //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
         //}
     }
-    printf("Accuracy: %f\n",(float) correct/n);
-    return error/n;
+    //printf("Accuracy: %f\n",(float) correct/n);
+    return error/pos;
 }
 float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
 {
@@ -304,7 +357,7 @@
     }
     visualize_network(net);
     cvWaitKey(100);
-    printf("Accuracy: %f\n", (float)correct/d.X.rows);
+    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
 int get_network_output_size_layer(network net, int i)
@@ -330,29 +383,63 @@
     return 0;
 }
 
-int reset_network_size(network net, int h, int w, int c)
+/*
+   int resize_network(network net, int h, int w, int c)
+   {
+   int i;
+   for (i = 0; i < net.n; ++i){
+   if(net.types[i] == CONVOLUTIONAL){
+   convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+   layer->h = h;
+   layer->w = w;
+   layer->c = c;
+   image output = get_convolutional_image(*layer);
+   h = output.h;
+   w = output.w;
+   c = output.c;
+   }
+   else if(net.types[i] == MAXPOOL){
+   maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+   layer->h = h;
+   layer->w = w;
+   layer->c = c;
+   image output = get_maxpool_image(*layer);
+   h = output.h;
+   w = output.w;
+   c = output.c;
+   }
+   }
+   return 0;
+   }
+ */
+
+int resize_network(network net, int h, int w, int c)
 {
     int i;
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            layer->h = h;
-            layer->w = w;
-            layer->c = c;
+            resize_convolutional_layer(layer, h, w, c);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
-        }
-        else if(net.types[i] == MAXPOOL){
+        }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            layer->h = h;
-            layer->w = w;
-            layer->c = c;
+            resize_maxpool_layer(layer, h, w, c);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == NORMALIZATION){
+            normalization_layer *layer = (normalization_layer *)net.layers[i];
+            resize_normalization_layer(layer, h, w, c);
+            image output = get_normalization_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else{
+            error("Cannot resize this type of layer");
         }
     }
     return 0;
@@ -374,6 +461,10 @@
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
     }
+    else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return get_normalization_image(layer);
+    }
     return make_empty_image(0,0,0);
 }
 
@@ -389,13 +480,18 @@
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_layer(layer, buff);
+            prev = visualize_convolutional_layer(layer, buff, prev);
+        }
+        if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            visualize_normalization_layer(layer, buff);
         }
     } 
 }
@@ -467,3 +563,4 @@
     return acc;
 }
 
+
diff --git a/src/network.h b/src/network.h
index c75804d..f6dac7e 100644
--- a/src/network.h
+++ b/src/network.h
@@ -9,18 +9,20 @@
     CONVOLUTIONAL,
     CONNECTED,
     MAXPOOL,
-    SOFTMAX
+    SOFTMAX,
+    NORMALIZATION
 } LAYER_TYPE;
 
 typedef struct {
     int n;
+    int batch;
     void **layers;
     LAYER_TYPE *types;
     int outputs;
     float *output;
 } network;
 
-network make_network(int n);
+network make_network(int n, int batch);
 void forward_network(network net, float *input);
 float backward_network(network net, float *input, float *truth);
 void update_network(network net, float step, float momentum, float decay);
@@ -41,7 +43,7 @@
 void print_network(network net);
 void visualize_network(network net);
 void save_network(network net, char *filename);
-int reset_network_size(network net, int h, int w, int c);
+int resize_network(network net, int h, int w, int c);
 
 #endif
 
diff --git a/src/normalization_layer.c b/src/normalization_layer.c
new file mode 100644
index 0000000..2d844e0
--- /dev/null
+++ b/src/normalization_layer.c
@@ -0,0 +1,96 @@
+#include "normalization_layer.h"
+#include <stdio.h>
+
+image get_normalization_image(normalization_layer layer)
+{
+    int h = layer.h;
+    int w = layer.w;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.output);
+}
+
+image get_normalization_delta(normalization_layer layer)
+{
+    int h = layer.h;
+    int w = layer.w;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.delta);
+}
+
+normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
+{
+    fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
+    normalization_layer *layer = calloc(1, sizeof(normalization_layer));
+    layer->batch = batch;
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->kappa = kappa;
+    layer->size = size;
+    layer->alpha = alpha;
+    layer->beta = beta;
+    layer->output = calloc(h * w * c * batch, sizeof(float));
+    layer->delta = calloc(h * w * c * batch, sizeof(float));
+    layer->sums = calloc(h*w, sizeof(float));
+    return layer;
+}
+
+void resize_normalization_layer(normalization_layer *layer, int h, int w, int c)
+{
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->output = realloc(layer->output, h * w * c * layer->batch * sizeof(float));
+    layer->delta = realloc(layer->delta, h * w * c * layer->batch * sizeof(float));
+    layer->sums = realloc(layer->sums, h*w * sizeof(float));
+}
+
+void add_square_array(float *src, float *dest, int n)
+{
+    int i;
+    for(i = 0; i < n; ++i){
+        dest[i] += src[i]*src[i];
+    }
+}
+void sub_square_array(float *src, float *dest, int n)
+{
+    int i;
+    for(i = 0; i < n; ++i){
+        dest[i] -= src[i]*src[i];
+    }
+}
+
+void forward_normalization_layer(const normalization_layer layer, float *in)
+{
+    int i,j,k;
+    memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
+    int imsize = layer.h*layer.w;
+    for(j = 0; j < layer.size/2; ++j){
+        if(j < layer.c) add_square_array(in+j*imsize, layer.sums, imsize);
+    }
+    for(k = 0; k < layer.c; ++k){
+        int next = k+layer.size/2;
+        int prev = k-layer.size/2-1;
+        if(next < layer.c) add_square_array(in+next*imsize, layer.sums, imsize);
+        if(prev > 0)        sub_square_array(in+prev*imsize, layer.sums, imsize);
+        for(i = 0; i < imsize; ++i){
+            layer.output[k*imsize + i] = in[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
+        }
+    }
+}
+
+void backward_normalization_layer(const normalization_layer layer, float *in, float *delta)
+{
+    //TODO!
+}
+
+void visualize_normalization_layer(normalization_layer layer, char *window)
+{
+    image delta = get_normalization_image(layer);
+    image dc = collapse_image_layers(delta, 1);
+    char buff[256];
+    sprintf(buff, "%s: Output", window);
+    show_image(dc, buff);
+    save_image(dc, buff);
+    free_image(dc);
+}
diff --git a/src/normalization_layer.h b/src/normalization_layer.h
new file mode 100644
index 0000000..fcf8af1
--- /dev/null
+++ b/src/normalization_layer.h
@@ -0,0 +1,26 @@
+#ifndef NORMALIZATION_LAYER_H
+#define NORMALIZATION_LAYER_H
+
+#include "image.h"
+
+typedef struct {
+    int batch;
+    int h,w,c;
+    int size;
+    float alpha;
+    float beta;
+    float kappa;
+    float *delta;
+    float *output;
+    float *sums;
+} normalization_layer;
+
+image get_normalization_image(normalization_layer layer);
+normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
+void resize_normalization_layer(normalization_layer *layer, int h, int w, int c);
+void forward_normalization_layer(const normalization_layer layer, float *in);
+void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
+void visualize_normalization_layer(normalization_layer layer, char *window);
+
+#endif
+
diff --git a/src/opencl.c b/src/opencl.c
new file mode 100644
index 0000000..193fba3
--- /dev/null
+++ b/src/opencl.c
@@ -0,0 +1,77 @@
+#include "opencl.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+cl_info cl = {0};
+
+void check_error(cl_info info)
+{
+    if (info.error != CL_SUCCESS) {
+        printf("\n Error number %d", info.error);
+    }
+}
+
+cl_info cl_init()
+{
+    cl_info info;
+    info.initialized = 0;
+    cl_uint platforms, devices;
+    // Fetch the Platform and Device IDs; we only want one.
+    info.error=clGetPlatformIDs(1, &info.platform, &platforms);
+    check_error(info);
+    info.error=clGetDeviceIDs(info.platform, CL_DEVICE_TYPE_ALL, 1, &info.device, &devices);
+    check_error(info);
+
+    cl_context_properties properties[]={
+        CL_CONTEXT_PLATFORM, (cl_context_properties)info.platform,
+        0};
+    // Note that nVidia's OpenCL requires the platform property
+    info.context=clCreateContext(properties, 1, &info.device, 0, 0, &info.error);
+    check_error(info);
+    info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
+    check_error(info);
+    info.initialized = 1;
+    return info;
+}
+
+cl_program cl_fprog(char *filename, char *options, cl_info info)
+{
+    size_t srcsize;
+    char src[8192];
+    memset(src, 0, 8192);
+    FILE *fil=fopen(filename,"r");
+    srcsize=fread(src, sizeof src, 1, fil);
+    fclose(fil);
+    const char *srcptr[]={src};
+    // Submit the source code of the example kernel to OpenCL
+    cl_program prog=clCreateProgramWithSource(info.context,1, srcptr, &srcsize, &info.error);
+    check_error(info);
+    char build_c[4096];
+    // and compile it (after this we could extract the compiled version)
+    info.error=clBuildProgram(prog, 0, 0, options, 0, 0);
+    if ( info.error != CL_SUCCESS ) {
+        fprintf(stderr, "Error Building Program: %d\n", info.error);
+        clGetProgramBuildInfo( prog, info.device, CL_PROGRAM_BUILD_LOG, 4096, build_c, 0);
+        fprintf(stderr, "Build Log for %s program:\n%s\n", filename, build_c);
+    }
+    return prog;
+}
+
+void cl_setup()
+{
+    if(!cl.initialized){
+        cl = cl_init();
+    }
+}
+
+cl_kernel get_kernel(char *filename, char *kernelname, char *options)
+{
+    cl_setup();
+    cl_program prog = cl_fprog(filename, options, cl);
+    cl_kernel kernel=clCreateKernel(prog, kernelname, &cl.error);
+    check_error(cl);
+    return kernel;
+}
+
+
diff --git a/src/opencl.h b/src/opencl.h
new file mode 100644
index 0000000..59efbae
--- /dev/null
+++ b/src/opencl.h
@@ -0,0 +1,21 @@
+#ifdef __APPLE__
+#include <OpenCL/opencl.h>
+#else
+#include <CL/cl.h>
+#endif
+
+typedef struct {
+    int initialized;
+    cl_int error;
+    cl_platform_id platform;
+    cl_device_id device;
+    cl_context context;
+    cl_command_queue queue;
+}cl_info;
+
+extern cl_info cl;
+
+void cl_setup();
+void check_error(cl_info info);
+cl_kernel get_kernel(char *filename, char *kernelname, char *options);
+
diff --git a/src/parser.c b/src/parser.c
index cf35a94..4aa0a79 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,6 +7,7 @@
 #include "convolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "list.h"
 #include "option_list.h"
@@ -21,6 +22,7 @@
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_softmax(section *s);
+int is_normalization(section *s);
 list *read_cfg(char *filename);
 
 void free_section(section *s)
@@ -52,6 +54,7 @@
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
+        net.batch = option_find_int(options, "batch",1);
     }else{
         image m =  get_network_image_layer(net, count-1);
         h = m.h;
@@ -59,7 +62,7 @@
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
+    convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
     char *data = option_find_str(options, "data", 0);
     if(data){
         char *curr = data;
@@ -90,10 +93,11 @@
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
+        net.batch = option_find_int(options, "batch",1);
     }else{
         input =  get_network_output_size_layer(net, count-1);
     }
-    connected_layer *layer = make_connected_layer(input, output, activation);
+    connected_layer *layer = make_connected_layer(net.batch, input, output, activation);
     char *data = option_find_str(options, "data", 0);
     if(data){
         char *curr = data;
@@ -120,10 +124,11 @@
     int input;
     if(count == 0){
         input = option_find_int(options, "input",1);
+        net.batch = option_find_int(options, "batch",1);
     }else{
         input =  get_network_output_size_layer(net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(input);
+    softmax_layer *layer = make_softmax_layer(net.batch, input);
     option_unused(options);
     return layer;
 }
@@ -136,6 +141,7 @@
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
+        net.batch = option_find_int(options, "batch",1);
     }else{
         image m =  get_network_image_layer(net, count-1);
         h = m.h;
@@ -143,7 +149,31 @@
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
+    maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
+    option_unused(options);
+    return layer;
+}
+
+normalization_layer *parse_normalization(list *options, network net, int count)
+{
+    int h,w,c;
+    int size = option_find_int(options, "size",1);
+    float alpha = option_find_float(options, "alpha", 0.);
+    float beta = option_find_float(options, "beta", 1.);
+    float kappa = option_find_float(options, "kappa", 1.);
+    if(count == 0){
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net.batch = option_find_int(options, "batch",1);
+    }else{
+        image m =  get_network_image_layer(net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before convolutional layer must output image.");
+    }
+    normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
@@ -151,7 +181,7 @@
 network parse_network_cfg(char *filename)
 {
     list *sections = read_cfg(filename);
-    network net = make_network(sections->size);
+    network net = make_network(sections->size, 0);
 
     node *n = sections->front;
     int count = 0;
@@ -162,18 +192,27 @@
             convolutional_layer *layer = parse_convolutional(options, net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
+            net.batch = layer->batch;
         }else if(is_connected(s)){
             connected_layer *layer = parse_connected(options, net, count);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
+            net.batch = layer->batch;
         }else if(is_softmax(s)){
             softmax_layer *layer = parse_softmax(options, net, count);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
+            net.batch = layer->batch;
         }else if(is_maxpool(s)){
             maxpool_layer *layer = parse_maxpool(options, net, count);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
+            net.batch = layer->batch;
+        }else if(is_normalization(s)){
+            normalization_layer *layer = parse_normalization(options, net, count);
+            net.types[count] = NORMALIZATION;
+            net.layers[count] = layer;
+            net.batch = layer->batch;
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -208,6 +247,11 @@
     return (strcmp(s->type, "[soft]")==0
             || strcmp(s->type, "[softmax]")==0);
 }
+int is_normalization(section *s)
+{
+    return (strcmp(s->type, "[lrnorm]")==0
+            || strcmp(s->type, "[localresponsenormalization]")==0);
+}
 
 int read_option(char *s, list *options)
 {
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index b6b7ff3..1268423 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -3,13 +3,14 @@
 #include <stdlib.h>
 #include <stdio.h>
 
-softmax_layer *make_softmax_layer(int inputs)
+softmax_layer *make_softmax_layer(int batch, int inputs)
 {
     fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
     softmax_layer *layer = calloc(1, sizeof(softmax_layer));
+    layer->batch = batch;
     layer->inputs = inputs;
-    layer->output = calloc(inputs, sizeof(float));
-    layer->delta = calloc(inputs, sizeof(float));
+    layer->output = calloc(inputs*batch, sizeof(float));
+    layer->delta = calloc(inputs*batch, sizeof(float));
     return layer;
 }
 
@@ -28,28 +29,30 @@
 */
 void forward_softmax_layer(const softmax_layer layer, float *input)
 {
-    int i;
-    float sum = 0;
-    float largest = 0;
-    for(i = 0; i < layer.inputs; ++i){
-        if(input[i] > largest) largest = input[i];
-    }
-    for(i = 0; i < layer.inputs; ++i){
-        sum += exp(input[i]-largest);
-        //printf("%f, ", input[i]);
-    }
-    //printf("\n");
-    if(sum) sum = largest+log(sum);
-    else sum = largest-100;
-    for(i = 0; i < layer.inputs; ++i){
-        layer.output[i] = exp(input[i]-sum);
+    int i,b;
+    for(b = 0; b < layer.batch; ++b){
+        float sum = 0;
+        float largest = 0;
+        for(i = 0; i < layer.inputs; ++i){
+            if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
+        }
+        for(i = 0; i < layer.inputs; ++i){
+            sum += exp(input[i+b*layer.inputs]-largest);
+            //printf("%f, ", input[i]);
+        }
+        //printf("\n");
+        if(sum) sum = largest+log(sum);
+        else sum = largest-100;
+        for(i = 0; i < layer.inputs; ++i){
+            layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
+        }
     }
 }
 
 void backward_softmax_layer(const softmax_layer layer, float *input, float *delta)
 {
     int i;
-    for(i = 0; i < layer.inputs; ++i){
+    for(i = 0; i < layer.inputs*layer.batch; ++i){
         delta[i] = layer.delta[i];
     }
 }
diff --git a/src/softmax_layer.h b/src/softmax_layer.h
index bfcd390..414030c 100644
--- a/src/softmax_layer.h
+++ b/src/softmax_layer.h
@@ -3,11 +3,12 @@
 
 typedef struct {
     int inputs;
+    int batch;
     float *delta;
     float *output;
 } softmax_layer;
 
-softmax_layer *make_softmax_layer(int inputs);
+softmax_layer *make_softmax_layer(int batch, int inputs);
 void forward_softmax_layer(const softmax_layer layer, float *input);
 void backward_softmax_layer(const softmax_layer layer, float *input, float *delta);
 
diff --git a/src/tests.c b/src/tests.c
index 1c7b01d..0319947 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -1,5 +1,4 @@
 #include "connected_layer.h"
-//#include "old_conv.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 #include "network.h"
@@ -19,649 +18,796 @@
 
 void test_convolve()
 {
-    image dog = load_image("dog.jpg",300,400);
-    printf("dog channels %d\n", dog.c);
-    image kernel = make_random_image(3,3,dog.c);
-    image edge = make_image(dog.h, dog.w, 1);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge, 1);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
+	image dog = load_image("dog.jpg",300,400);
+	printf("dog channels %d\n", dog.c);
+	image kernel = make_random_image(3,3,dog.c);
+	image edge = make_image(dog.h, dog.w, 1);
+	int i;
+	clock_t start = clock(), end;
+	for(i = 0; i < 1000; ++i){
+		convolve(dog, kernel, 1, 0, edge, 1);
+	}
+	end = clock();
+	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image_layers(edge, "Test Convolve");
 }
 
 void test_convolve_matrix()
 {
-    image dog = load_image("dog.jpg",300,400);
-    printf("dog channels %d\n", dog.c);
-    
-    int size = 11;
-    int stride = 4;
-    int n = 40;
-    float *filters = make_random_image(size, size, dog.c*n).data;
+	image dog = load_image("dog.jpg",300,400);
+	printf("dog channels %d\n", dog.c);
 
-    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
-    int mh = (size*size*dog.c);
-    float *matrix = calloc(mh*mw, sizeof(float));
+	int size = 11;
+	int stride = 4;
+	int n = 40;
+	float *filters = make_random_image(size, size, dog.c*n).data;
 
-    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+	int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+	int mh = (size*size*dog.c);
+	float *matrix = calloc(mh*mw, sizeof(float));
+
+	image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
 
 
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
-        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
-    cvWaitKey(0);
+	int i;
+	clock_t start = clock(), end;
+	for(i = 0; i < 1000; ++i){
+		im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+		gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+	}
+	end = clock();
+	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image_layers(edge, "Test Convolve");
+	cvWaitKey(0);
 }
 
 void test_color()
 {
-    image dog = load_image("test_color.png", 300, 400);
-    show_image_layers(dog, "Test Color");
+	image dog = load_image("test_color.png", 300, 400);
+	show_image_layers(dog, "Test Color");
 }
 
 void verify_convolutional_layer()
 {
-    srand(0);
-    int i;
-    int n = 1;
-    int stride = 1;
-    int size = 3;
-    float eps = .00000001;
-    image test = make_random_image(5,5, 1);
-    convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
-    image out = get_convolutional_image(layer);
-    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
-    
-    forward_convolutional_layer(layer, test.data);
-    image base = copy_image(out);
+	srand(0);
+	int i;
+	int n = 1;
+	int stride = 1;
+	int size = 3;
+	float eps = .00000001;
+	image test = make_random_image(5,5, 1);
+	convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
+	image out = get_convolutional_image(layer);
+	float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
 
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        test.data[i] += eps;
-        forward_convolutional_layer(layer, test.data);
-        image partial = copy_image(out);
-        subtract_image(partial, base);
-        scale_image(partial, 1/eps);
-        jacobian[i] = partial.data;
-        test.data[i] -= eps;
-    }
-    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
-    image in_delta = make_image(test.h, test.w, test.c);
-    image out_delta = get_convolutional_delta(layer);
-    for(i = 0; i < out.h*out.w*out.c; ++i){
-        out_delta.data[i] = 1;
-        backward_convolutional_layer(layer, in_delta.data);
-        image partial = copy_image(in_delta);
-        jacobian2[i] = partial.data;
-        out_delta.data[i] = 0;
-    }
-    int j;
-    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        for(j =0 ; j < out.h*out.w*out.c; ++j){
-            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
-            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
-            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
-        }
-    }
+	forward_convolutional_layer(layer, test.data);
+	image base = copy_image(out);
+
+	for(i = 0; i < test.h*test.w*test.c; ++i){
+		test.data[i] += eps;
+		forward_convolutional_layer(layer, test.data);
+		image partial = copy_image(out);
+		subtract_image(partial, base);
+		scale_image(partial, 1/eps);
+		jacobian[i] = partial.data;
+		test.data[i] -= eps;
+	}
+	float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
+	image in_delta = make_image(test.h, test.w, test.c);
+	image out_delta = get_convolutional_delta(layer);
+	for(i = 0; i < out.h*out.w*out.c; ++i){
+		out_delta.data[i] = 1;
+		backward_convolutional_layer(layer, in_delta.data);
+		image partial = copy_image(in_delta);
+		jacobian2[i] = partial.data;
+		out_delta.data[i] = 0;
+	}
+	int j;
+	float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+	float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+	for(i = 0; i < test.h*test.w*test.c; ++i){
+		for(j =0 ; j < out.h*out.w*out.c; ++j){
+			j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
+			j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
+			printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
+		}
+	}
 
 
-    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
-    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
-    show_image(mj1, "forward jacobian");
-    show_image(mj2, "backward jacobian");
+	image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+	image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+	printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
+	show_image(mj1, "forward jacobian");
+	show_image(mj2, "backward jacobian");
 }
 
 void test_load()
 {
-    image dog = load_image("dog.jpg", 300, 400);
-    show_image(dog, "Test Load");
-    show_image_layers(dog, "Test Load");
+	image dog = load_image("dog.jpg", 300, 400);
+	show_image(dog, "Test Load");
+	show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg", 300, 400);
-    int n = 3;
-    image up = make_image(n*dog.h, n*dog.w, dog.c);
-    upsample_image(dog, n, up);
-    show_image(up, "Test Upsample");
-    show_image_layers(up, "Test Upsample");
+	image dog = load_image("dog.jpg", 300, 400);
+	int n = 3;
+	image up = make_image(n*dog.h, n*dog.w, dog.c);
+	upsample_image(dog, n, up);
+	show_image(up, "Test Upsample");
+	show_image_layers(up, "Test Upsample");
 }
 
 void test_rotate()
 {
-    int i;
-    image dog = load_image("dog.jpg",300,400);
-    clock_t start = clock(), end;
-    for(i = 0; i < 1001; ++i){
-        rotate_image(dog);
-    }
-    end = clock();
-    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-    show_image(dog, "Test Rotate");
+	int i;
+	image dog = load_image("dog.jpg",300,400);
+	clock_t start = clock(), end;
+	for(i = 0; i < 1001; ++i){
+		rotate_image(dog);
+	}
+	end = clock();
+	printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image(dog, "Test Rotate");
 
-    image random = make_random_image(3,3,3);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
+	image random = make_random_image(3,3,3);
+	show_image(random, "Test Rotate Random");
+	rotate_image(random);
+	show_image(random, "Test Rotate Random");
+	rotate_image(random);
+	show_image(random, "Test Rotate Random");
 }
 
 void test_parser()
 {
-    network net = parse_network_cfg("test_parser.cfg");
-    float input[1];
-    int count = 0;
-        
-    float avgerr = 0;
-    while(++count < 100000000){
-        float v = ((float)rand()/RAND_MAX);
-        float truth = v*v;
-        input[0] = v;
-        forward_network(net, input);
-        float *out = get_network_output(net);
-        float *delta = get_network_delta(net);
-        float err = pow((out[0]-truth),2.);
-        avgerr = .99 * avgerr + .01 * err;
-        if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        delta[0] = truth - out[0];
-        backward_network(net, input, &truth);
-        update_network(net, .001,0,0);
-    }
+	network net = parse_network_cfg("test_parser.cfg");
+	float input[1];
+	int count = 0;
+
+	float avgerr = 0;
+	while(++count < 100000000){
+		float v = ((float)rand()/RAND_MAX);
+		float truth = v*v;
+		input[0] = v;
+		forward_network(net, input);
+		float *out = get_network_output(net);
+		float *delta = get_network_delta(net);
+		float err = pow((out[0]-truth),2.);
+		avgerr = .99 * avgerr + .01 * err;
+		if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+		delta[0] = truth - out[0];
+		backward_network(net, input, &truth);
+		update_network(net, .001,0,0);
+	}
 }
 
 void test_data()
 {
-    char *labels[] = {"cat","dog"};
-    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
-    free_data(train);
+	char *labels[] = {"cat","dog"};
+	data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
+	free_data(train);
 }
 
 void train_full()
 {
-    network net = parse_network_cfg("cfg/imagenet.cfg");
-    srand(2222222);
-    int i = 0;
-    char *labels[] = {"cat","dog"};
-    float lr = .00001;
-    float momentum = .9;
-    float decay = 0.01;
-    while(1){
-        i += 1000;
-        data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
-        image im = float_to_image(256, 256, 3,train.X.vals[0]);
-        //visualize_network(net);
-        //cvWaitKey(100);
-        //show_image(im, "input");
-        //cvWaitKey(100);
-        //scale_data_rows(train, 1./255.);
-        normalize_data_rows(train);
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
-        end = clock();
-        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
-        free_data(train);
-        if(i%10000==0){
-            char buff[256];
-            sprintf(buff, "cfg/assira_backup_%d.cfg", i);
-            save_network(net, buff);
-        }
-        //lr *= .99;
-    }
+	network net = parse_network_cfg("cfg/imagenet.cfg");
+	srand(2222222);
+	int i = 0;
+	char *labels[] = {"cat","dog"};
+	float lr = .00001;
+	float momentum = .9;
+	float decay = 0.01;
+	while(1){
+		i += 1000;
+		data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
+		//image im = float_to_image(256, 256, 3,train.X.vals[0]);
+		//visualize_network(net);
+		//cvWaitKey(100);
+		//show_image(im, "input");
+		//cvWaitKey(100);
+		//scale_data_rows(train, 1./255.);
+		normalize_data_rows(train);
+		clock_t start = clock(), end;
+		float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+		end = clock();
+		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+		free_data(train);
+		if(i%10000==0){
+			char buff[256];
+			sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+			save_network(net, buff);
+		}
+		//lr *= .99;
+	}
+}
+
+void test_visualize()
+{
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	srand(2222222);
+	visualize_network(net);
+	cvWaitKey(0);
 }
 void test_full()
 {
-    network net = parse_network_cfg("cfg/backup_1300.cfg");
-    srand(2222222);
-    int i,j;
-    int total = 100;
-    char *labels[] = {"cat","dog"};
-    FILE *fp = fopen("preds.txt","w");
-    for(i = 0; i < total; ++i){
-        visualize_network(net);
-        cvWaitKey(100);
-        data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
-        image im = float_to_image(256, 256, 3,test.X.vals[0]);
-        show_image(im, "input");
-        cvWaitKey(100);
-        normalize_data_rows(test);
-        for(j = 0; j < test.X.rows; ++j){
-            float *x = test.X.vals[j];
-            forward_network(net, x);
-            int class = get_predicted_class_network(net);
-            fprintf(fp, "%d\n", class);
-        }
-        free_data(test);
-    }
-    fclose(fp);
+	network net = parse_network_cfg("cfg/backup_1300.cfg");
+	srand(2222222);
+	int i,j;
+	int total = 100;
+	char *labels[] = {"cat","dog"};
+	FILE *fp = fopen("preds.txt","w");
+	for(i = 0; i < total; ++i){
+		visualize_network(net);
+		cvWaitKey(100);
+		data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
+		image im = float_to_image(256, 256, 3,test.X.vals[0]);
+		show_image(im, "input");
+		cvWaitKey(100);
+		normalize_data_rows(test);
+		for(j = 0; j < test.X.rows; ++j){
+			float *x = test.X.vals[j];
+			forward_network(net, x);
+			int class = get_predicted_class_network(net);
+			fprintf(fp, "%d\n", class);
+		}
+		free_data(test);
+	}
+	fclose(fp);
+}
+
+void test_cifar10()
+{
+	data test = load_cifar10_data("images/cifar10/test_batch.bin");
+	scale_data_rows(test, 1./255);
+	network net = parse_network_cfg("cfg/cifar10.cfg");
+	int count = 0;
+	float lr = .000005;
+	float momentum = .99;
+	float decay = 0.001;
+	decay = 0;
+	int batch = 10000;
+	while(++count <= 10000){
+		char buff[256];
+		sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1);
+		data train = load_cifar10_data(buff);
+		scale_data_rows(train, 1./255);
+		train_network_sgd(net, train, batch, lr, momentum, decay);
+		//printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+
+		float test_acc = network_accuracy(net, test);
+		printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc);
+		free_data(train);
+	}
+
+}
+
+void test_vince()
+{
+	network net = parse_network_cfg("cfg/vince.cfg");
+	data train = load_categorical_data_csv("images/vince.txt", 144, 2);
+	normalize_data_rows(train);
+
+	int count = 0;
+	float lr = .00005;
+	float momentum = .9;
+	float decay = 0.0001;
+	decay = 0;
+	int batch = 10000;
+	while(++count <= 10000){
+		float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+		printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+	}
 }
 
 void test_nist()
 {
-    srand(444444);
-    srand(888888);
-    network net = parse_network_cfg("nist.cfg");
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    normalize_data_rows(test);
-    //randomize_data(train);
-    int count = 0;
-    float lr = .0005;
-    float momentum = .9;
-    float decay = 0.001;
-    clock_t start = clock(), end;
-    while(++count <= 100){
-        //visualize_network(net);
-        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
-        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
-        end = clock();
-        printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
-        start=end;
-        //cvWaitKey(100);
-        //lr /= 2; 
-        if(count%5 == 0){
-            float train_acc = network_accuracy(net, train);
-            fprintf(stderr, "\nTRAIN: %f\n", train_acc);
-            float test_acc = network_accuracy(net, test);
-            fprintf(stderr, "TEST: %f\n\n", test_acc);
-            printf("%d, %f, %f\n", count, train_acc, test_acc);
-            //lr *= .5;
-        }
-    }
+	srand(444444);
+	srand(888888);
+	network net = parse_network_cfg("cfg/nist_basic.cfg");
+	data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+	data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
+	normalize_data_rows(train);
+	normalize_data_rows(test);
+	//randomize_data(train);
+	int count = 0;
+	float lr = .00005;
+	float momentum = .9;
+	float decay = 0.0001;
+	decay = 0;
+	//clock_t start = clock(), end;
+	int batch = 10000;
+	while(++count <= 10000){
+		float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+		printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+		//printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
+		//end = clock();
+		//printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+		//start=end;
+		/*
+		   if(count%5 == 0){
+		   float train_acc = network_accuracy(net, train);
+		   fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+		   float test_acc = network_accuracy(net, test);
+		   fprintf(stderr, "TEST: %f\n\n", test_acc);
+		   printf("%d, %f, %f\n", count, train_acc, test_acc);
+		//lr *= .5;
+		}
+		*/
+	}
 }
 
 void test_ensemble()
 {
-    int i;
-    srand(888888);
-    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    normalize_data_rows(d);
-    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
-    normalize_data_rows(test);
-    data train = d;
-    //   data *split = split_data(d, 1, 10);
-    //   data train = split[0];
-    //   data test = split[1];
-    matrix prediction = make_matrix(test.y.rows, test.y.cols);
-    int n = 30;
-    for(i = 0; i < n; ++i){
-        int count = 0;
-        float lr = .0005;
-        float momentum = .9;
-        float decay = .01;
-        network net = parse_network_cfg("nist.cfg");
-        while(++count <= 15){
-            float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
-            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
-            lr /= 2; 
-        }
-        matrix partial = network_predict_data(net, test);
-        float acc = matrix_accuracy(test.y, partial);
-        printf("Model Accuracy: %lf\n", acc);
-        matrix_add_matrix(partial, prediction);
-        acc = matrix_accuracy(test.y, prediction);
-        printf("Current Ensemble Accuracy: %lf\n", acc);
-        free_matrix(partial);
-    }
-    float acc = matrix_accuracy(test.y, prediction);
-    printf("Full Ensemble Accuracy: %lf\n", acc);
+	int i;
+	srand(888888);
+	data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+	normalize_data_rows(d);
+	data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+	normalize_data_rows(test);
+	data train = d;
+	//   data *split = split_data(d, 1, 10);
+	//   data train = split[0];
+	//   data test = split[1];
+	matrix prediction = make_matrix(test.y.rows, test.y.cols);
+	int n = 30;
+	for(i = 0; i < n; ++i){
+		int count = 0;
+		float lr = .0005;
+		float momentum = .9;
+		float decay = .01;
+		network net = parse_network_cfg("nist.cfg");
+		while(++count <= 15){
+			float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+			printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+			lr /= 2; 
+		}
+		matrix partial = network_predict_data(net, test);
+		float acc = matrix_accuracy(test.y, partial);
+		printf("Model Accuracy: %lf\n", acc);
+		matrix_add_matrix(partial, prediction);
+		acc = matrix_accuracy(test.y, prediction);
+		printf("Current Ensemble Accuracy: %lf\n", acc);
+		free_matrix(partial);
+	}
+	float acc = matrix_accuracy(test.y, prediction);
+	printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
 void test_random_classify()
 {
-    network net = parse_network_cfg("connected.cfg");
-    matrix m = csv_to_matrix("train.csv");
-    //matrix ho = hold_out_matrix(&m, 2500);
-    float *truth = pop_column(&m, 0);
-    //float *ho_truth = pop_column(&ho, 0);
-    int i;
-    clock_t start = clock(), end;
-    int count = 0;
-    while(++count <= 300){
-        for(i = 0; i < m.rows; ++i){
-            int index = rand()%m.rows;
-            //image p = float_to_image(1690,1,1,m.vals[index]);
-            //normalize_image(p);
-            forward_network(net, m.vals[index]);
-            float *out = get_network_output(net);
-            float *delta = get_network_delta(net);
-            //printf("%f\n", out[0]);
-            delta[0] = truth[index] - out[0];
-            // printf("%f\n", delta[0]);
-            //printf("%f %f\n", truth[index], out[0]);
-            //backward_network(net, m.vals[index], );
-            update_network(net, .00001, 0,0);
-        }
-        //float test_acc = error_network(net, m, truth);
-        //float valid_acc = error_network(net, ho, ho_truth);
-        //printf("%f, %f\n", test_acc, valid_acc);
-        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
-        //if(valid_acc > .70) break;
-    }
-    end = clock();
-    FILE *fp = fopen("submission/out.txt", "w");
-    matrix test = csv_to_matrix("test.csv");
-    truth = pop_column(&test, 0);
-    for(i = 0; i < test.rows; ++i){
-        forward_network(net, test.vals[i]);
-        float *out = get_network_output(net);
-        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
-        else fprintf(fp, "1\n");
-    }
-    fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	network net = parse_network_cfg("connected.cfg");
+	matrix m = csv_to_matrix("train.csv");
+	//matrix ho = hold_out_matrix(&m, 2500);
+	float *truth = pop_column(&m, 0);
+	//float *ho_truth = pop_column(&ho, 0);
+	int i;
+	clock_t start = clock(), end;
+	int count = 0;
+	while(++count <= 300){
+		for(i = 0; i < m.rows; ++i){
+			int index = rand()%m.rows;
+			//image p = float_to_image(1690,1,1,m.vals[index]);
+			//normalize_image(p);
+			forward_network(net, m.vals[index]);
+			float *out = get_network_output(net);
+			float *delta = get_network_delta(net);
+			//printf("%f\n", out[0]);
+			delta[0] = truth[index] - out[0];
+			// printf("%f\n", delta[0]);
+			//printf("%f %f\n", truth[index], out[0]);
+			//backward_network(net, m.vals[index], );
+			update_network(net, .00001, 0,0);
+		}
+		//float test_acc = error_network(net, m, truth);
+		//float valid_acc = error_network(net, ho, ho_truth);
+		//printf("%f, %f\n", test_acc, valid_acc);
+		//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
+		//if(valid_acc > .70) break;
+	}
+	end = clock();
+	FILE *fp = fopen("submission/out.txt", "w");
+	matrix test = csv_to_matrix("test.csv");
+	truth = pop_column(&test, 0);
+	for(i = 0; i < test.rows; ++i){
+		forward_network(net, test.vals[i]);
+		float *out = get_network_output(net);
+		if(fabs(out[0]) < .5) fprintf(fp, "0\n");
+		else fprintf(fp, "1\n");
+	}
+	fclose(fp);
+	printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
 }
 
 void test_split()
 {
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data *split = split_data(train, 0, 13);
-    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
+	data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+	data *split = split_data(train, 0, 13);
+	printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
 void test_im2row()
 {
-    int h = 20;
-    int w = 20;
-    int c = 3;
-    int stride = 1;
-    int size = 11;
-    image test = make_random_image(h,w,c);
-    int mc = 1;
-    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
-    int mh = (size*size*c);
-    int msize = mc*mw*mh;
-    float *matrix = calloc(msize, sizeof(float));
-    int i;
-    for(i = 0; i < 1000; ++i){
-        im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
-        //image render = float_to_image(mh, mw, mc, matrix);
-    }
+	int h = 20;
+	int w = 20;
+	int c = 3;
+	int stride = 1;
+	int size = 11;
+	image test = make_random_image(h,w,c);
+	int mc = 1;
+	int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+	int mh = (size*size*c);
+	int msize = mc*mw*mh;
+	float *matrix = calloc(msize, sizeof(float));
+	int i;
+	for(i = 0; i < 1000; ++i){
+		im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+		//image render = float_to_image(mh, mw, mc, matrix);
+	}
+}
+
+void flip_network()
+{
+	network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg");
+	save_network(net, "cfg/voc_imagenet_rev.cfg");
 }
 
 void train_VOC()
 {
-    network net = parse_network_cfg("cfg/voc_start.cfg");
-    srand(2222222);
-    int i = 20;
-    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
-    float lr = .00001;
-    float momentum = .9;
-    float decay = 0.01;
-    while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
+	network net = parse_network_cfg("cfg/voc_start.cfg");
+	srand(2222222);
+	int i = 20;
+	char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+	float lr = .00001;
+	float momentum = .9;
+	float decay = 0.01;
+	while(i++ < 1000 || 1){
+		data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
 
-        image im = float_to_image(300, 400, 3,train.X.vals[0]);
-        show_image(im, "input");
-        visualize_network(net);
-        cvWaitKey(100);
+		image im = float_to_image(300, 400, 3,train.X.vals[0]);
+		show_image(im, "input");
+		visualize_network(net);
+		cvWaitKey(100);
 
-        normalize_data_rows(train);
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
-        end = clock();
-        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
-        free_data(train);
-        if(i%10==0){
-            char buff[256];
-            sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
-            save_network(net, buff);
-        }
-        //lr *= .99;
-    }
+		normalize_data_rows(train);
+		clock_t start = clock(), end;
+		float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+		end = clock();
+		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+		free_data(train);
+		if(i%10==0){
+			char buff[256];
+			sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
+			save_network(net, buff);
+		}
+		//lr *= .99;
+	}
 }
 
 int voc_size(int x)
 {
-    x = x-1+3;
-    x = x-1+3;
-    x = x-1+3;
-    x = (x-1)*2+1;
-    x = x-1+5;
-    x = (x-1)*2+1;
-    x = (x-1)*4+11;
-    return x;
+	x = x-1+3;
+	x = x-1+3;
+	x = x-1+3;
+	x = (x-1)*2+1;
+	x = x-1+5;
+	x = (x-1)*2+1;
+	x = (x-1)*4+11;
+	return x;
 }
 
 image features_output_size(network net, IplImage *src, int outh, int outw)
 {
-    int h = voc_size(outh);
-    int w = voc_size(outw);
-    printf("%d %d\n", h, w);
+	int h = voc_size(outh);
+	int w = voc_size(outw);
+	fprintf(stderr, "%d %d\n", h, w);
 
-    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
-    cvResize(src, sized, CV_INTER_LINEAR);
-    image im = ipl_to_image(sized);
-    reset_network_size(net, im.h, im.w, im.c);
-    forward_network(net, im.data);
-    image out = get_network_image_layer(net, 6);
-    //printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
-    free_image(im);
-    cvReleaseImage(&sized);
-    return copy_image(out);
+	IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+	cvResize(src, sized, CV_INTER_LINEAR);
+	image im = ipl_to_image(sized);
+	normalize_array(im.data, im.h*im.w*im.c);
+	resize_network(net, im.h, im.w, im.c);
+	forward_network(net, im.data);
+	image out = get_network_image_layer(net, 6);
+	free_image(im);
+	cvReleaseImage(&sized);
+	return copy_image(out);
 }
 
-void features_VOC(int part, int total)
+void features_VOC_image_size(char *image_path, int h, int w)
 {
-    int i,j, count = 0;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    char *path_file = "images/VOC2012/all_paths.txt";
-    char *out_dir = "voc_features/";
-    list *paths = get_paths(path_file);
-    node *n = paths->front;
-    int size = paths->size;
-    for(count = 0; count < part*size/total; ++count) n = n->next;
-    while(n && count++ < (part+1)*size/total){
-        char *path = (char *)n->val;
-        char buff[1024];
-        sprintf(buff, "%s%s.txt",out_dir, path);
-        printf("%s\n", path);
-        FILE *fp = fopen(buff, "w");
-        if(fp == 0) file_error(buff);
+	int j;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	fprintf(stderr, "%s\n", image_path);
 
-        IplImage* src = 0;
-        if( (src = cvLoadImage(path,-1)) == 0 )
-        {
-            printf("Cannot load file image %s\n", path);
-            exit(0);
-        }
-        int w = src->width;
-        int h = src->height;
-        int sbin = 8;
-        int interval = 10;
-        double scale = pow(2., 1./interval);
-        int m = (w<h)?w:h;
-        int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
-        image *ims = calloc(max_scale+interval, sizeof(image));
+	IplImage* src = 0;
+	if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+	image out = features_output_size(net, src, h, w);
+	for(j = 0; j < out.c*out.h*out.w; ++j){
+		if(j != 0) printf(",");
+		printf("%g", out.data[j]);
+	}
+	printf("\n");
+	free_image(out);
+	cvReleaseImage(&src);
+}
+void visualize_imagenet_topk(char *filename)
+{
+	int i,j,k,l;
+	int topk = 10;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	list *plist = get_paths(filename);
+	node *n = plist->front;
+	int h = voc_size(1), w = voc_size(1);
+	int num = get_network_image(net).c;
+	image **vizs = calloc(num, sizeof(image*));
+	float **score = calloc(num, sizeof(float *));
+	for(i = 0; i < num; ++i){
+		vizs[i] = calloc(topk, sizeof(image));
+		for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3);
+		score[i] = calloc(topk, sizeof(float));
+	}
 
-        for(i = 0; i < interval; ++i){
-            double factor = 1./pow(scale, i);
-            double ih =  round(h*factor);
-            double iw =  round(w*factor);
-            int ex_h = round(ih/4.) - 2;
-            int ex_w = round(iw/4.) - 2;
-            ims[i] = features_output_size(net, src, ex_h, ex_w);
+	int count = 0;
+	while(n){
+		++count;
+		char *image_path = (char *)n->val;
+		image im = load_image(image_path, 0, 0);
+		n = n->next;
+		if(im.h < 200 || im.w < 200) continue;
+		printf("Processing %dx%d image\n", im.h, im.w);
+		resize_network(net, im.h, im.w, im.c);
+		//scale_image(im, 1./255);
+		translate_image(im, -144);
+		forward_network(net, im.data);
+		image out = get_network_image(net);
 
-            ih =  round(h*factor);
-            iw =  round(w*factor);
-            ex_h = round(ih/8.) - 2;
-            ex_w = round(iw/8.) - 2;
-            ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
-            for(j = i+interval; j < max_scale; j += interval){
-                factor /= 2.;
-                ih =  round(h*factor);
-                iw =  round(w*factor);
-                ex_h = round(ih/8.) - 2;
-                ex_w = round(iw/8.) - 2;
-                ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
-            }
-        }
-        for(i = 0; i < max_scale+interval; ++i){
-            image out = ims[i];
-            //printf("%d, %d\n", out.h, out.w);
-            fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
-            for(j = 0; j < out.c*out.h*out.w; ++j){
-                if(j != 0)fprintf(fp, ",");
-                fprintf(fp, "%g", out.data[j]);
-            }
-            fprintf(fp, "\n");
-            free_image(out);
-        }
-        free(ims);
-        fclose(fp);
-        cvReleaseImage(&src);
-        n = n->next;
-    }
+		int dh = (im.h - h)/(out.h-1);
+		int dw = (im.w - w)/(out.w-1);
+		//printf("%d %d\n", dh, dw);
+		for(k = 0; k < out.c; ++k){
+			float topv = 0;
+			int topi = -1;
+			int topj = -1;
+			for(i = 0; i < out.h; ++i){
+				for(j = 0; j < out.w; ++j){
+					float val = get_pixel(out, i, j, k);
+					if(val > topv){
+						topv = val;
+						topi = i;
+						topj = j;
+					}
+				}
+			}
+			if(topv){
+				image sub = get_sub_image(im, dh*topi, dw*topj, h, w);
+				for(l = 0; l < topk; ++l){
+					if(topv > score[k][l]){
+						float swap = score[k][l];
+						score[k][l] = topv;
+						topv = swap;
+
+						image swapi = vizs[k][l];
+						vizs[k][l] = sub;
+						sub = swapi;
+					}
+				}
+				free_image(sub);
+			}
+		}
+		free_image(im);
+		if(count%50 == 0){
+			image grid = grid_images(vizs, num, topk);
+			//show_image(grid, "IMAGENET Visualization");
+			save_image(grid, "IMAGENET Grid Single Nonorm");
+			free_image(grid);
+		}
+	}
+	//cvWaitKey(0);
+}
+
+void visualize_imagenet_features(char *filename)
+{
+	int i,j,k;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	list *plist = get_paths(filename);
+	node *n = plist->front;
+	int h = voc_size(1), w = voc_size(1);
+	int num = get_network_image(net).c;
+	image *vizs = calloc(num, sizeof(image));
+	for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
+	while(n){
+		char *image_path = (char *)n->val;
+		image im = load_image(image_path, 0, 0);
+		printf("Processing %dx%d image\n", im.h, im.w);
+		resize_network(net, im.h, im.w, im.c);
+		forward_network(net, im.data);
+		image out = get_network_image(net);
+
+		int dh = (im.h - h)/h;
+		int dw = (im.w - w)/w;
+		for(i = 0; i < out.h; ++i){
+			for(j = 0; j < out.w; ++j){
+				image sub = get_sub_image(im, dh*i, dw*j, h, w);
+				for(k = 0; k < out.c; ++k){
+					float val = get_pixel(out, i, j, k);
+					//printf("%f, ", val);
+					image sub_c = copy_image(sub);
+					scale_image(sub_c, val);
+					add_into_image(sub_c, vizs[k], 0, 0);
+					free_image(sub_c);
+				}
+				free_image(sub);
+			}
+		}
+		//printf("\n");
+		show_images(vizs, 10, "IMAGENET Visualization");
+		cvWaitKey(1000);
+		n = n->next;
+	}
+	cvWaitKey(0);
+}
+
+void visualize_cat()
+{
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	image im = load_image("data/cat.png", 0, 0);
+	printf("Processing %dx%d image\n", im.h, im.w);
+	resize_network(net, im.h, im.w, im.c);
+	forward_network(net, im.data);
+
+	image out = get_network_image(net);
+	visualize_network(net);
+	cvWaitKey(1000);
+	cvWaitKey(0);
 }
 
 void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
 {
 	int flip = 1;
-    int interval = 4;
-    int i,j;
-    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    char image_path[1024];
-    sprintf(image_path, "%s%s",image_dir, image_file);
-    char out_path[1024];
-    if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
+	int interval = 4;
+	int i,j;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	char image_path[1024];
+	sprintf(image_path, "%s/%s",image_dir, image_file);
+	char out_path[1024];
+	if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
 	else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file);
-    printf("%s\n", image_file);
-    FILE *fp = fopen(out_path, "w");
-    if(fp == 0) file_error(out_path);
+	printf("%s\n", image_file);
+	FILE *fp = fopen(out_path, "w");
+	if(fp == 0) file_error(out_path);
 
-    IplImage* src = 0;
-    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
-if(flip)cvFlip(src, 0, 1);
-    int w = src->width;
-    int h = src->height;
-    int sbin = 8;
-    double scale = pow(2., 1./interval);
-    int m = (w<h)?w:h;
-    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
-    image *ims = calloc(max_scale+interval, sizeof(image));
+	IplImage* src = 0;
+	if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+	if(flip)cvFlip(src, 0, 1);
+	int w = src->width;
+	int h = src->height;
+	int sbin = 8;
+	double scale = pow(2., 1./interval);
+	int m = (w<h)?w:h;
+	int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+	if(max_scale < interval) error("max_scale must be >= interval");
+	image *ims = calloc(max_scale+interval, sizeof(image));
 
-    for(i = 0; i < interval; ++i){
-        double factor = 1./pow(scale, i);
-        double ih =  round(h*factor);
-        double iw =  round(w*factor);
-        int ex_h = round(ih/4.) - 2;
-        int ex_w = round(iw/4.) - 2;
-        ims[i] = features_output_size(net, src, ex_h, ex_w);
+	for(i = 0; i < interval; ++i){
+		double factor = 1./pow(scale, i);
+		double ih =  round(h*factor);
+		double iw =  round(w*factor);
+		int ex_h = round(ih/4.) - 2;
+		int ex_w = round(iw/4.) - 2;
+		ims[i] = features_output_size(net, src, ex_h, ex_w);
 
-        ih =  round(h*factor);
-        iw =  round(w*factor);
-        ex_h = round(ih/8.) - 2;
-        ex_w = round(iw/8.) - 2;
-        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
-        for(j = i+interval; j < max_scale; j += interval){
-            factor /= 2.;
-            ih =  round(h*factor);
-            iw =  round(w*factor);
-            ex_h = round(ih/8.) - 2;
-            ex_w = round(iw/8.) - 2;
-            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
-        }
-    }
-    for(i = 0; i < max_scale+interval; ++i){
-        image out = ims[i];
-        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
-        for(j = 0; j < out.c*out.h*out.w; ++j){
-            if(j != 0)fprintf(fp, ",");
-            fprintf(fp, "%g", out.data[j]);
-        }
-        fprintf(fp, "\n");
-        free_image(out);
-    }
-    free(ims);
-    fclose(fp);
-    cvReleaseImage(&src);
+		ih =  round(h*factor);
+		iw =  round(w*factor);
+		ex_h = round(ih/8.) - 2;
+		ex_w = round(iw/8.) - 2;
+		ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+		for(j = i+interval; j < max_scale; j += interval){
+			factor /= 2.;
+			ih =  round(h*factor);
+			iw =  round(w*factor);
+			ex_h = round(ih/8.) - 2;
+			ex_w = round(iw/8.) - 2;
+			ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+		}
+	}
+	for(i = 0; i < max_scale+interval; ++i){
+		image out = ims[i];
+		fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+		for(j = 0; j < out.c*out.h*out.w; ++j){
+			if(j != 0)fprintf(fp, ",");
+			fprintf(fp, "%g", out.data[j]);
+		}
+		fprintf(fp, "\n");
+		free_image(out);
+	}
+	free(ims);
+	fclose(fp);
+	cvReleaseImage(&src);
 }
 
 void test_distribution()
 {
-    IplImage* img = 0;
-    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
-    network net = parse_network_cfg("cfg/voc_features.cfg");
-    int h = img->height/8-2;
-    int w = img->width/8-2;
-    image out = features_output_size(net, img, h, w);
-    int c = out.c;
-    out.c = 1;
-    show_image(out, "output");
-    out.c = c;
-    image input = ipl_to_image(img);
-    show_image(input, "input");
-    CvScalar s;
-    int i,j;
-    image affects = make_image(input.h, input.w, 1);
-    int count = 0;
-    for(i = 0; i<img->height; i += 1){
-        for(j = 0; j < img->width; j += 1){
-            IplImage *copy = cvCloneImage(img);
-            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
-            printf("%d/%d\n", count++, img->height*img->width);
-            s.val[0]=0;
-            s.val[1]=0;
-            s.val[2]=0;
-            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
-            image mod = features_output_size(net, copy, h, w);
-            image dist = image_distance(out, mod);
-            show_image(affects, "affects");
-            cvWaitKey(1);
-            cvReleaseImage(&copy);
-            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
-            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
-            free_image(mod);
-            free_image(dist);
-        }
-    }
-    show_image(affects, "Origins");
-    cvWaitKey(0);
-    cvWaitKey(0);
+	IplImage* img = 0;
+	if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
+	network net = parse_network_cfg("cfg/voc_features.cfg");
+	int h = img->height/8-2;
+	int w = img->width/8-2;
+	image out = features_output_size(net, img, h, w);
+	int c = out.c;
+	out.c = 1;
+	show_image(out, "output");
+	out.c = c;
+	image input = ipl_to_image(img);
+	show_image(input, "input");
+	CvScalar s;
+	int i,j;
+	image affects = make_image(input.h, input.w, 1);
+	int count = 0;
+	for(i = 0; i<img->height; i += 1){
+		for(j = 0; j < img->width; j += 1){
+			IplImage *copy = cvCloneImage(img);
+			s=cvGet2D(copy,i,j); // get the (i,j) pixel value
+			printf("%d/%d\n", count++, img->height*img->width);
+			s.val[0]=0;
+			s.val[1]=0;
+			s.val[2]=0;
+			cvSet2D(copy,i,j,s); // set the (i,j) pixel value
+			image mod = features_output_size(net, copy, h, w);
+			image dist = image_distance(out, mod);
+			show_image(affects, "affects");
+			cvWaitKey(1);
+			cvReleaseImage(&copy);
+			//affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
+			affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
+			free_image(mod);
+			free_image(dist);
+		}
+	}
+	show_image(affects, "Origins");
+	cvWaitKey(0);
+	cvWaitKey(0);
 }
 
 
 int main(int argc, char *argv[])
 {
-    //train_full();
-    //test_distribution();
-    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+	//train_full();
+	//test_distribution();
+	//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
 
-    //test_blas();
-    //test_convolve_matrix();
-    //    test_im2row();
-    //test_split();
-    //test_ensemble();
-    //test_nist();
-    //test_full();
-    //train_VOC();
-    features_VOC_image(argv[1], argv[2], argv[3]);
-    printf("Success!\n");
-    //test_random_preprocess();
-    //test_random_classify();
-    //test_parser();
-    //test_backpropagate();
-    //test_ann();
-    //test_convolve();
-    //test_upsample();
-    //test_rotate();
-    //test_load();
-    //test_network();
-    //test_convolutional_layer();
-    //verify_convolutional_layer();
-    //test_color();
-    //cvWaitKey(0);
-    return 0;
+	//test_blas();
+	//test_visualize();
+	//test_gpu_blas();
+	//test_blas();
+	//test_convolve_matrix();
+	//    test_im2row();
+	//test_split();
+	//test_ensemble();
+	//test_nist();
+	//test_cifar10();
+	//test_vince();
+	//test_full();
+	//train_VOC();
+	//features_VOC_image(argv[1], argv[2], argv[3]);
+	//features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
+	//visualize_imagenet_features("data/assira/train.list");
+	visualize_imagenet_topk("data/VOC2012.list");
+	//visualize_cat();
+	//flip_network();
+	//test_visualize();
+	fprintf(stderr, "Success!\n");
+	//test_random_preprocess();
+	//test_random_classify();
+	//test_parser();
+	//test_backpropagate();
+	//test_ann();
+	//test_convolve();
+	//test_upsample();
+	//test_rotate();
+	//test_load();
+	//test_network();
+	//test_convolutional_layer();
+	//verify_convolutional_layer();
+	//test_color();
+	//cvWaitKey(0);
+	return 0;
 }
diff --git a/test.jpg b/test.jpg
deleted file mode 100644
index f7b6cb8..0000000
--- a/test.jpg
+++ /dev/null
Binary files differ
diff --git a/test_color.png b/test_color.png
deleted file mode 100644
index 1a1836e..0000000
--- a/test_color.png
+++ /dev/null
Binary files differ
diff --git a/test_dog.jpg b/test_dog.jpg
deleted file mode 100644
index aa98311..0000000
--- a/test_dog.jpg
+++ /dev/null
Binary files differ
diff --git a/test_hinton.jpg b/test_hinton.jpg
deleted file mode 100644
index 25b3821..0000000
--- a/test_hinton.jpg
+++ /dev/null
Binary files differ

--
Gitblit v1.10.0