From b4b729a15e577c68f64e0ac69fb299de6f5f706c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 17 Apr 2014 16:58:24 +0000
Subject: [PATCH] Merge branch 'master' of pjreddie.com:jnet

---
 src/convolutional_layer.c |  256 ++++++++++++++++++++++++++++++++-------------------
 1 files changed, 161 insertions(+), 95 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 53eb7bf..6916eeb 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -3,59 +3,67 @@
 #include "mini_blas.h"
 #include <stdio.h>
 
+int convolutional_out_height(convolutional_layer layer)
+{
+    return (layer.h-layer.size)/layer.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer layer)
+{
+    return (layer.w-layer.size)/layer.stride + 1;
+}
+
 image get_convolutional_image(convolutional_layer layer)
 {
     int h,w,c;
-    h = layer.out_h;
-    w = layer.out_w;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
-    return double_to_image(h,w,c,layer.output);
+    return float_to_image(h,w,c,layer.output);
 }
 
 image get_convolutional_delta(convolutional_layer layer)
 {
     int h,w,c;
-    h = layer.out_h;
-    w = layer.out_w;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
     c = layer.n;
-    return double_to_image(h,w,c,layer.delta);
+    return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
-    int out_h,out_w;
     size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
     layer->h = h;
     layer->w = w;
     layer->c = c;
     layer->n = n;
+    layer->batch = batch;
     layer->stride = stride;
     layer->size = size;
 
-    layer->filters = calloc(c*n*size*size, sizeof(double));
-    layer->filter_updates = calloc(c*n*size*size, sizeof(double));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(double));
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
 
-    layer->biases = calloc(n, sizeof(double));
-    layer->bias_updates = calloc(n, sizeof(double));
-    layer->bias_momentum = calloc(n, sizeof(double));
-    double scale = 2./(size*size);
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale;
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    layer->bias_momentum = calloc(n, sizeof(float));
+    float scale = 1./(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = 0;
     }
-    out_h = (h-size)/stride + 1;
-    out_w = (w-size)/stride + 1;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(double));
-    layer->output = calloc(out_h * out_w * n, sizeof(double));
-    layer->delta  = calloc(out_h * out_w * n, sizeof(double));
+    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->activation = activation;
-    layer->out_h = out_h;
-    layer->out_w = out_w;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
     srand(0);
@@ -63,42 +71,73 @@
     return layer;
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, double *in)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
 {
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+}
+
+void forward_convolutional_layer(const convolutional_layer layer, float *in)
+{
+    int i;
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
-    int n = ((layer.h-layer.size)/layer.stride + 1)*
-            ((layer.w-layer.size)/layer.stride + 1);
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
 
-    memset(layer.output, 0, m*n*sizeof(double));
+    memset(layer.output, 0, m*n*sizeof(float));
 
-    double *a = layer.filters;
-    double *b = layer.col_image;
-    double *c = layer.output;
-
-    im2col_cpu(in,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
+    float *a = layer.filters;
+    float *b = layer.col_image;
+    float *c = layer.output;
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
+    }
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 
+    for(i = 0; i < m*n; ++i){
+        layer.output[i] = activate(layer.output[i], layer.activation);
+    }
+    //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
+
 }
 
 void gradient_delta_convolutional_layer(convolutional_layer layer)
 {
     int i;
-    for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){
+    int size = convolutional_out_height(layer)*
+                convolutional_out_width(layer)*
+                layer.n*
+                layer.batch;
+    for(i = 0; i < size; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
     }
 }
 
 void learn_bias_convolutional_layer(convolutional_layer layer)
 {
-    int i,j;
-    int size = layer.out_h*layer.out_w;
-    for(i = 0; i < layer.n; ++i){
-        double sum = 0;
-        for(j = 0; j < size; ++j){
-            sum += layer.delta[j+i*size];
+    int i,j,b;
+    int size = convolutional_out_height(layer)
+                *convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
+        for(i = 0; i < layer.n; ++i){
+            float sum = 0;
+            for(j = 0; j < size; ++j){
+                sum += layer.delta[j+size*(i+b*layer.n)];
+            }
+            layer.bias_updates[i] += sum/size;
         }
-        layer.bias_updates[i] += sum/size;
     }
 }
 
@@ -108,17 +147,41 @@
     learn_bias_convolutional_layer(layer);
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
-    int k = ((layer.h-layer.size)/layer.stride + 1)*
-            ((layer.w-layer.size)/layer.stride + 1);
+    int k = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
 
-    double *a = layer.delta;
-    double *b = layer.col_image;
-    double *c = layer.filter_updates;
+    float *a = layer.delta;
+    float *b = layer.col_image;
+    float *c = layer.filter_updates;
 
     gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
 }
 
-void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
+void backward_convolutional_layer(convolutional_layer layer, float *delta)
+{
+    int i;
+    int m = layer.size*layer.size*layer.c;
+    int k = layer.n;
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
+
+    float *a = layer.filters;
+    float *b = layer.delta;
+    float *c = layer.col_image;
+
+
+    memset(c, 0, m*n*sizeof(float));
+    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    for(i = 0; i < layer.batch; ++i){
+        col2im_cpu(c+i*n/layer.batch,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta+i*n/layer.batch);
+    }
+}
+
+void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
 {
     int i;
     int size = layer.size*layer.size*layer.c*layer.n;
@@ -133,9 +196,9 @@
 }
 /*
 
-void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
+void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
 {
-    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
+    image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
     image out_delta = get_convolutional_delta(layer);
     int i,j;
     for(i = 0; i < layer.n; ++i){
@@ -156,10 +219,10 @@
 }
 
 
-void learn_convolutional_layer(convolutional_layer layer, double *input)
+void learn_convolutional_layer(convolutional_layer layer, float *input)
 {
     int i;
-    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
+    image in_image = float_to_image(layer.h, layer.w, layer.c, input);
     image out_delta = get_convolutional_delta(layer);
     gradient_delta_convolutional_layer(layer);
     for(i = 0; i < layer.n; ++i){
@@ -168,7 +231,7 @@
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
+void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
 {
     int i,j;
     for(i = 0; i < layer.n; ++i){
@@ -189,22 +252,29 @@
 
 void test_convolutional_layer()
 {
-    convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR);
-    double input[] =    {1,2,3,4,
+    convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
+    float input[] =    {1,2,3,4,
                         5,6,7,8,
                         9,10,11,12,
                         13,14,15,16};
-    double filter[] =   {.5, 0, .3,
+    float filter[] =   {.5, 0, .3,
                         0  , 1,  0,
                         .2 , 0,  1};
-    double delta[] =    {1, 2,
+    float delta[] =    {1, 2,
                         3,  4};
+    float in_delta[] = {.5,1,.3,.6,
+                        5,6,7,8,
+                        9,10,11,12,
+                        13,14,15,16};
     l.filters = filter;
     forward_convolutional_layer(l, input);
     l.delta = delta;
     learn_convolutional_layer(l);
-    image filter_updates = double_to_image(3,3,1,l.filter_updates);
+    image filter_updates = float_to_image(3,3,1,l.filter_updates);
     print_image(filter_updates);
+    printf("Delta:\n");
+    backward_convolutional_layer(l, in_delta);
+    pm(4,4,in_delta);
 }
 
 image get_convolutional_filter(convolutional_layer layer, int i)
@@ -212,55 +282,51 @@
     int h = layer.size;
     int w = layer.size;
     int c = layer.c;
-    return double_to_image(h,w,c,layer.filters+i*h*w*c);
+    return float_to_image(h,w,c,layer.filters+i*h*w*c);
 }
 
-void visualize_convolutional_layer(convolutional_layer layer, char *window)
+image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
 {
-    int color = 1;
-    int border = 1;
-    int h,w,c;
-    int size = layer.size;
-    h = size;
-    w = (size + border) * layer.n - border;
-    c = layer.c;
-    if(c != 3 || !color){
-        h = (h+border)*c - border;
-        c = 1;
+    image *filters = calloc(layer.n, sizeof(image));
+    int i,j,k,c;
+    if(!prev_filters){
+        for(i = 0; i < layer.n; ++i){
+            filters[i] = copy_image(get_convolutional_filter(layer, i));
+        }
     }
-
-    image filters = make_image(h,w,c);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        int w_offset = i*(size+border);
-        image k = get_convolutional_filter(layer, i);
-        //printf("%f ** ", layer.biases[i]);
-        //print_image(k);
-        image copy = copy_image(k);
-        normalize_image(copy);
-        for(j = 0; j < k.c; ++j){
-            //set_pixel(copy,0,0,j,layer.biases[i]);
-        }
-        if(c == 3 && color){
-            embed_image(copy, filters, 0, w_offset);
-        }
-        else{
-            for(j = 0; j < k.c; ++j){
-                int h_offset = j*(size+border);
-                image layer = get_image_layer(k, j);
-                embed_image(layer, filters, h_offset, w_offset);
-                free_image(layer);
+    else{
+        image base = prev_filters[0];
+        for(i = 0; i < layer.n; ++i){
+            image filter = get_convolutional_filter(layer, i);
+            filters[i] = make_image(base.h, base.w, base.c);
+            for(j = 0; j < layer.size; ++j){
+                for(k = 0; k < layer.size; ++k){
+                    for(c = 0; c < layer.c; ++c){
+                        float weight = get_pixel(filter, j, k, c);
+                        image prev_filter = copy_image(prev_filters[c]);
+                        scale_image(prev_filter, weight);
+                        add_into_image(prev_filter, filters[i], 0,0);
+                        free_image(prev_filter);
+                    }
+                }
             }
         }
-        free_image(copy);
     }
-    image delta = get_convolutional_delta(layer);
+    return filters;
+}
+
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+{
+    image *single_filters = weighted_sum_filters(layer, 0);
+    show_images(single_filters, layer.n, window);
+
+    image delta = get_convolutional_image(layer);
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
-    sprintf(buff, "%s: Delta", window);
+    sprintf(buff, "%s: Output", window);
     show_image(dc, buff);
+    save_image(dc, buff);
     free_image(dc);
-    show_image(filters, window);
-    free_image(filters);
+    return single_filters;
 }
 

--
Gitblit v1.10.0