From b5936b499abc94c0efffbcc99b5698574b59d860 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 05 Sep 2015 00:52:44 +0000
Subject: [PATCH] lots of stuff
---
src/parser.c | 96 +++++++++++++++++++++++++++++++++++++++++++++---
1 files changed, 90 insertions(+), 6 deletions(-)
diff --git a/src/parser.c b/src/parser.c
index b373c01..b9f6cb6 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -14,6 +14,7 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
+#include "region_layer.h"
#include "avgpool_layer.h"
#include "route_layer.h"
#include "list.h"
@@ -37,6 +38,7 @@
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
+int is_region(section *s);
int is_route(section *s);
list *read_cfg(char *filename);
@@ -172,11 +174,23 @@
return layer;
}
+region_layer parse_region(list *options, size_params params)
+{
+ int coords = option_find_int(options, "coords", 1);
+ int classes = option_find_int(options, "classes", 1);
+ int rescore = option_find_int(options, "rescore", 0);
+ int num = option_find_int(options, "num", 1);
+ int side = option_find_int(options, "side", 7);
+ region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
+ return layer;
+}
+
cost_layer parse_cost(list *options, size_params params)
{
char *type_s = option_find_str(options, "type", "sse");
COST_TYPE type = get_cost_type(type_s);
- cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
+ float scale = option_find_float_quiet(options, "scale",1);
+ cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
return layer;
}
@@ -292,6 +306,16 @@
return layer;
}
+learning_rate_policy get_policy(char *s)
+{
+ if (strcmp(s, "poly")==0) return POLY;
+ if (strcmp(s, "constant")==0) return CONSTANT;
+ if (strcmp(s, "step")==0) return STEP;
+ if (strcmp(s, "exp")==0) return EXP;
+ fprintf(stderr, "Couldn't find policy %s, going with constant\n", s);
+ return CONSTANT;
+}
+
void parse_net_options(list *options, network *net)
{
net->batch = option_find_int(options, "batch",1);
@@ -306,7 +330,20 @@
net->w = option_find_int_quiet(options, "width",0);
net->c = option_find_int_quiet(options, "channels",0);
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+
+ char *policy_s = option_find_str(options, "policy", "constant");
+ net->policy = get_policy(policy_s);
+ if(net->policy == STEP){
+ net->step = option_find_int(options, "step", 1);
+ net->gamma = option_find_float(options, "gamma", 1);
+ } else if (net->policy == EXP){
+ net->gamma = option_find_float(options, "gamma", 1);
+ } else if (net->policy == POLY){
+ net->power = option_find_float(options, "power", 1);
+ }
+ net->max_batches = option_find_int(options, "max_batches", 0);
}
network parse_network_cfg(char *filename)
@@ -330,6 +367,7 @@
n = n->next;
int count = 0;
+ free_section(s);
while(n){
fprintf(stderr, "%d: ", count);
s = (section *)n->val;
@@ -347,6 +385,8 @@
l = parse_cost(options, params);
}else if(is_detection(s)){
l = parse_detection(options, params);
+ }else if(is_region(s)){
+ l = parse_region(options, params);
}else if(is_softmax(s)){
l = parse_softmax(options, params);
}else if(is_normalization(s)){
@@ -399,6 +439,10 @@
{
return (strcmp(s->type, "[detection]")==0);
}
+int is_region(section *s)
+{
+ return (strcmp(s->type, "[region]")==0);
+}
int is_deconvolutional(section *s)
{
return (strcmp(s->type, "[deconv]")==0
@@ -503,6 +547,45 @@
return sections;
}
+void save_weights_double(network net, char *filename)
+{
+ fprintf(stderr, "Saving doubled weights to %s\n", filename);
+ FILE *fp = fopen(filename, "w");
+ if(!fp) file_error(filename);
+
+ fwrite(&net.learning_rate, sizeof(float), 1, fp);
+ fwrite(&net.momentum, sizeof(float), 1, fp);
+ fwrite(&net.decay, sizeof(float), 1, fp);
+ fwrite(net.seen, sizeof(int), 1, fp);
+
+ int i,j,k;
+ for(i = 0; i < net.n; ++i){
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+#ifdef GPU
+ if(gpu_index >= 0){
+ pull_convolutional_layer(l);
+ }
+#endif
+ float zero = 0;
+ fwrite(l.biases, sizeof(float), l.n, fp);
+ fwrite(l.biases, sizeof(float), l.n, fp);
+
+ for (j = 0; j < l.n; ++j){
+ int index = j*l.c*l.size*l.size;
+ fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
+ for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
+ }
+ for (j = 0; j < l.n; ++j){
+ int index = j*l.c*l.size*l.size;
+ for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
+ fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
+ }
+ }
+ }
+ fclose(fp);
+}
+
void save_weights_upto(network net, char *filename, int cutoff)
{
fprintf(stderr, "Saving weights to %s\n", filename);
@@ -512,7 +595,7 @@
fwrite(&net.learning_rate, sizeof(float), 1, fp);
fwrite(&net.momentum, sizeof(float), 1, fp);
fwrite(&net.decay, sizeof(float), 1, fp);
- fwrite(&net.seen, sizeof(int), 1, fp);
+ fwrite(net.seen, sizeof(int), 1, fp);
int i;
for(i = 0; i < net.n && i < cutoff; ++i){
@@ -561,10 +644,11 @@
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);
- fread(&net->learning_rate, sizeof(float), 1, fp);
- fread(&net->momentum, sizeof(float), 1, fp);
- fread(&net->decay, sizeof(float), 1, fp);
- fread(&net->seen, sizeof(int), 1, fp);
+ float garbage;
+ fread(&garbage, sizeof(float), 1, fp);
+ fread(&garbage, sizeof(float), 1, fp);
+ fread(&garbage, sizeof(float), 1, fp);
+ fread(net->seen, sizeof(int), 1, fp);
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
--
Gitblit v1.10.0