From b5938098d12d5c9fe48e7cc71ae3d75b7306833f Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Mon, 02 Jan 2017 12:33:31 +0000
Subject: [PATCH] Update Readme.md - pragma-libs in How to compile

---
 README.md |   90 ++++++++++++++++++++++++++++++++++++++++++--
 1 files changed, 85 insertions(+), 5 deletions(-)

diff --git a/README.md b/README.md
index f0205a5..e86062a 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,6 @@
-![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
+|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
+|---|---|
+
 
 # Yolo-Windows v2
 # "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
@@ -83,6 +85,13 @@
   3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories
   
   3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories
+  
+  3.3 Open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... : 
+
+    * `#pragma comment(lib, "opencv_core249.lib")`
+    * `#pragma comment(lib, "opencv_imgproc249.lib")`
+    * `#pragma comment(lib, "opencv_highgui249.lib")` 
+
 
 4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
 
@@ -94,9 +103,9 @@
 - (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
 
 `C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
-- right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
+- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
 - add to project all .c & .cu files from `\src`
--  (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
+- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
 
 `C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
 -  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
@@ -104,6 +113,12 @@
 `..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
 - (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
 
+- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... : 
+
+    * `#pragma comment(lib, "opencv_core249.lib")`
+    * `#pragma comment(lib, "opencv_imgproc249.lib")`
+    * `#pragma comment(lib, "opencv_highgui249.lib")` 
+
 `OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
 - compile to .exe (X64 & Release) and put .dll-s near with .exe:
 
@@ -132,8 +147,73 @@
 
 ## How to train with multi-GPU:
 
-1. Train it first on 1 gpu for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
 
-2. Then stop and run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23 -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
+
+## How to train (to detect your custom objects):
+
+1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and:
+
+  * change line `classes=20` to your number of objects
+  * change line `filters=425` to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
+
+  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
+
+  ```
+  [convolutional]
+  filters=35
+
+  [region]
+  classes=2
+  ```
+
+2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
+
+3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
+
+  ```
+  classes= 2
+  train  = train.txt
+  valid  = test.txt
+  names = obj.names
+  backup = backup/
+  ```
+
+4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
+
+5. Create `.txt`-file for each `.jpg`-image-file - with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+
+  Where: 
+  * `<object-class>` - integer number of object from `0` to `(classes-1)`
+  * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0
+  * atention: `<x> <y>` - are center of rectangle (are not top-left corner)
+
+  For example for `img1.jpg` you should create `img1.txt` containing:
+
+  ```
+  1 0.716797 0.395833 0.216406 0.147222
+  0 0.687109 0.379167 0.255469 0.158333
+  1 0.420312 0.395833 0.140625 0.166667
+  ```
+
+6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
+
+  ```
+  data/obj/img1.jpg
+  data/obj/img2.jpg
+  data/obj/img3.jpg
+  ```
+
+7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
+
+8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
+
+
+## How to mark bounded boxes of objects and create annotation files:
+
+Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
+
+With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2

--
Gitblit v1.10.0