From b5938098d12d5c9fe48e7cc71ae3d75b7306833f Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Mon, 02 Jan 2017 12:33:31 +0000
Subject: [PATCH] Update Readme.md - pragma-libs in How to compile

---
 src/region_layer.c |  241 ++++++++++++++++++++++++++++++++++-------------
 1 files changed, 172 insertions(+), 69 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 2702636..9095b3c 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -9,6 +9,8 @@
 #include <string.h>
 #include <stdlib.h>
 
+#define DOABS 1
+
 region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
 {
     region_layer l = {0};
@@ -42,25 +44,43 @@
     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
 #endif
 
-    fprintf(stderr, "Region Layer\n");
+    fprintf(stderr, "detection\n");
     srand(0);
 
     return l;
 }
 
-#define LOG 1
+void resize_region_layer(layer *l, int w, int h)
+{
+    l->w = w;
+    l->h = h;
+
+    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
+    l->inputs = l->outputs;
+
+    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+    l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
+#endif
+}
 
 box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
 {
     box b;
-    b.x = (i + .5)/w + x[index + 0] * biases[2*n];
-    b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
-    if(LOG){
-        b.x = (i + logistic_activate(x[index + 0])) / w;
-        b.y = (j + logistic_activate(x[index + 1])) / h;
-    }
+    b.x = (i + logistic_activate(x[index + 0])) / w;
+    b.y = (j + logistic_activate(x[index + 1])) / h;
     b.w = exp(x[index + 2]) * biases[2*n];
     b.h = exp(x[index + 3]) * biases[2*n+1];
+    if(DOABS){
+        b.w = exp(x[index + 2]) * biases[2*n]   / w;
+        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
+    }
     return b;
 }
 
@@ -69,26 +89,47 @@
     box pred = get_region_box(x, biases, n, index, i, j, w, h);
     float iou = box_iou(pred, truth);
 
-    float tx = (truth.x - (i + .5)/w) / biases[2*n];
-    float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
-    if(LOG){
-        tx = (truth.x*w - i);
-        ty = (truth.y*h - j);
-    }
+    float tx = (truth.x*w - i);
+    float ty = (truth.y*h - j);
     float tw = log(truth.w / biases[2*n]);
     float th = log(truth.h / biases[2*n + 1]);
-
-    delta[index + 0] = scale * (tx - x[index + 0]);
-    delta[index + 1] = scale * (ty - x[index + 1]);
-    if(LOG){
-        delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
-        delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
+    if(DOABS){
+        tw = log(truth.w*w / biases[2*n]);
+        th = log(truth.h*h / biases[2*n + 1]);
     }
+
+    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
+    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
     delta[index + 2] = scale * (tw - x[index + 2]);
     delta[index + 3] = scale * (th - x[index + 3]);
     return iou;
 }
 
+void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, float *avg_cat)
+{
+    int i, n;
+    if(hier){
+        float pred = 1;
+        while(class >= 0){
+            pred *= output[index + class];
+            int g = hier->group[class];
+            int offset = hier->group_offset[g];
+            for(i = 0; i < hier->group_size[g]; ++i){
+                delta[index + offset + i] = scale * (0 - output[index + offset + i]);
+            }
+            delta[index + class] = scale * (1 - output[index + class]);
+
+            class = hier->parent[class];
+        }
+        *avg_cat += pred;
+    } else {
+        for(n = 0; n < classes; ++n){
+            delta[index + n] = scale * (((n == class)?1 : 0) - output[index + n]);
+            if(n == class) *avg_cat += output[index + n];
+        }
+    }
+}
+
 float logit(float x)
 {
     return log(x/(1.-x));
@@ -105,18 +146,34 @@
     int i,j,b,t,n;
     int size = l.coords + l.classes + 1;
     memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
-    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    #ifndef GPU
+    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    #endif
     for (b = 0; b < l.batch; ++b){
         for(i = 0; i < l.h*l.w*l.n; ++i){
             int index = size*i + b*l.outputs;
             l.output[index + 4] = logistic_activate(l.output[index + 4]);
-            if(l.softmax_tree){
+        }
+    }
+
+
+#ifndef GPU
+    if (l.softmax_tree){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
                 softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
-            } else if(l.softmax){
+            }
+        }
+    } else if (l.softmax){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
                 softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
             }
         }
     }
+#endif
     if(!state.train) return;
     memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
     float avg_iou = 0;
@@ -125,23 +182,64 @@
     float avg_obj = 0;
     float avg_anyobj = 0;
     int count = 0;
+    int class_count = 0;
     *(l.cost) = 0;
     for (b = 0; b < l.batch; ++b) {
+        if(l.softmax_tree){
+            int onlyclass = 0;
+            for(t = 0; t < 30; ++t){
+                box truth = float_to_box(state.truth + t*5 + b*l.truths);
+                if(!truth.x) break;
+                int class = state.truth[t*5 + b*l.truths + 4];
+                float maxp = 0;
+                int maxi = 0;
+                if(truth.x > 100000 && truth.y > 100000){
+                    for(n = 0; n < l.n*l.w*l.h; ++n){
+                        int index = size*n + b*l.outputs + 5;
+                        float scale =  l.output[index-1];
+                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class);
+                        if(p > maxp){
+                            maxp = p;
+                            maxi = n;
+                        }
+                    }
+                    int index = size*maxi + b*l.outputs + 5;
+                    delta_region_class(l.output, l.delta, index, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
+                    ++class_count;
+                    onlyclass = 1;
+                    break;
+                }
+            }
+            if(onlyclass) continue;
+        }
         for (j = 0; j < l.h; ++j) {
             for (i = 0; i < l.w; ++i) {
                 for (n = 0; n < l.n; ++n) {
                     int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                     box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
                     float best_iou = 0;
+                    int best_class = -1;
                     for(t = 0; t < 30; ++t){
                         box truth = float_to_box(state.truth + t*5 + b*l.truths);
                         if(!truth.x) break;
                         float iou = box_iou(pred, truth);
-                        if (iou > best_iou) best_iou = iou;
+                        if (iou > best_iou) {
+                            best_class = state.truth[t*5 + b*l.truths + 4];
+                            best_iou = iou;
+                        }
                     }
                     avg_anyobj += l.output[index + 4];
                     l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
-                    if(best_iou > l.thresh) l.delta[index + 4] = 0;
+                    if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    else{
+                        if (best_iou > l.thresh) {
+                            l.delta[index + 4] = 0;
+                            if(l.classfix > 0){
+                                delta_region_class(l.output, l.delta, index + 5, best_class, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat);
+                                ++class_count;
+                            }
+                        }
+                    }
 
                     if(*(state.net.seen) < 12800){
                         box truth = {0};
@@ -149,11 +247,11 @@
                         truth.y = (j + .5)/l.h;
                         truth.w = l.biases[2*n];
                         truth.h = l.biases[2*n+1];
+                        if(DOABS){
+                            truth.w = l.biases[2*n]/l.w;
+                            truth.h = l.biases[2*n+1]/l.h;
+                        }
                         delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
-                        //l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
-                        //l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
-                        //l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
-                        //l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
                     }
                 }
             }
@@ -178,6 +276,10 @@
                 if(l.bias_match){
                     pred.w = l.biases[2*n];
                     pred.h = l.biases[2*n+1];
+                    if(DOABS){
+                        pred.w = l.biases[2*n]/l.w;
+                        pred.h = l.biases[2*n+1]/l.h;
+                    }
                 }
                 //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                 pred.x = 0;
@@ -205,35 +307,17 @@
 
             int class = state.truth[t*5 + b*l.truths + 4];
             if (l.map) class = l.map[class];
-            if(l.softmax_tree){
-                float pred = 1;
-                while(class >= 0){
-                    pred *= l.output[best_index + 5 + class];
-                    int g = l.softmax_tree->group[class];
-                    int i;
-                    int offset = l.softmax_tree->group_offset[g];
-                    for(i = 0; i < l.softmax_tree->group_size[g]; ++i){
-                        int index = best_index + 5 + offset + i;
-                        l.delta[index] = l.class_scale * (0 - l.output[index]);
-                    }
-                    l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]);
-
-                    class = l.softmax_tree->parent[class];
-                }
-                avg_cat += pred;
-            } else {
-                for(n = 0; n < l.classes; ++n){
-                    l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
-                    if(n == class) avg_cat += l.output[best_index + 5 + n];
-                }
-            }
+            delta_region_class(l.output, l.delta, best_index + 5, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
             ++count;
+            ++class_count;
         }
     }
     //printf("\n");
-    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    #ifndef GPU
+    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    #endif
     *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
 }
 
 void backward_region_layer(const region_layer l, network_state state)
@@ -241,11 +325,10 @@
     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
-void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
 {
     int i,j,n;
     float *predictions = l.output;
-    //int per_cell = 5*num+classes;
     for (i = 0; i < l.w*l.h; ++i){
         int row = i / l.w;
         int col = i % l.w;
@@ -253,6 +336,7 @@
             int index = i*l.n + n;
             int p_index = index * (l.classes + 5) + 4;
             float scale = predictions[p_index];
+            if(l.classfix == -1 && scale < .5) scale = 0;
             int box_index = index * (l.classes + 5);
             boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
             boxes[index].x *= w;
@@ -262,19 +346,26 @@
 
             int class_index = index * (l.classes + 5) + 5;
             if(l.softmax_tree){
-                
+
                 hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
                 int found = 0;
-                for(j = l.classes - 1; j >= 0; --j){
-                    if(!found && predictions[class_index + j] > .5){
-                        found = 1;
-                    } else {
-                        predictions[class_index + j] = 0;
+                if(map){
+                    for(j = 0; j < 200; ++j){
+                        float prob = scale*predictions[class_index+map[j]];
+                        probs[index][j] = (prob > thresh) ? prob : 0;
                     }
-                    float prob = predictions[class_index+j];
-                    probs[index][j] = (scale > thresh) ? prob : 0;
+                } else {
+                    for(j = l.classes - 1; j >= 0; --j){
+                        if(!found && predictions[class_index + j] > .5){
+                            found = 1;
+                        } else {
+                            predictions[class_index + j] = 0;
+                        }
+                        float prob = predictions[class_index+j];
+                        probs[index][j] = (scale > thresh) ? prob : 0;
+                    }
                 }
-            }else{
+            } else {
                 for(j = 0; j < l.classes; ++j){
                     float prob = scale*predictions[class_index+j];
                     probs[index][j] = (prob > thresh) ? prob : 0;
@@ -297,6 +388,18 @@
        return;
        }
      */
+    flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
+    if(l.softmax_tree){
+        int i;
+        int count = 5;
+        for (i = 0; i < l.softmax_tree->groups; ++i) {
+            int group_size = l.softmax_tree->group_size[i];
+            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
+            count += group_size;
+        }
+    }else if (l.softmax){
+        softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
+    }
 
     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
@@ -305,22 +408,22 @@
         truth_cpu = calloc(num_truth, sizeof(float));
         cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
-    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
     network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
     cpu_state.input = in_cpu;
     forward_region_layer(l, cpu_state);
-    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
     free(cpu_state.input);
+    if(!state.train) return;
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
     if(cpu_state.truth) free(cpu_state.truth);
 }
 
 void backward_region_layer_gpu(region_layer l, network_state state)
 {
-    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
-    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+    flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
 }
 #endif
 

--
Gitblit v1.10.0