From b711627e84d2245e31a3b71d9e1119db49d6287c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 28 Jan 2016 20:30:54 +0000
Subject: [PATCH] rnn cfg
---
src/cost_layer.c | 45 ++++++++++++++++++++++++++++++++++-----------
1 files changed, 34 insertions(+), 11 deletions(-)
diff --git a/src/cost_layer.c b/src/cost_layer.c
index 24f6ffa..39ae809 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -11,7 +11,8 @@
{
if (strcmp(s, "sse")==0) return SSE;
if (strcmp(s, "masked")==0) return MASKED;
- fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
+ if (strcmp(s, "smooth")==0) return SMOOTH;
+ fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
return SSE;
}
@@ -22,16 +23,19 @@
return "sse";
case MASKED:
return "masked";
+ case SMOOTH:
+ return "smooth";
}
return "sse";
}
-cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type)
+cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
{
fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
cost_layer l = {0};
l.type = COST;
+ l.scale = scale;
l.batch = batch;
l.inputs = inputs;
l.outputs = inputs;
@@ -44,24 +48,39 @@
return l;
}
+void resize_cost_layer(cost_layer *l, int inputs)
+{
+ l->inputs = inputs;
+ l->outputs = inputs;
+ l->delta = realloc(l->delta, inputs*l->batch*sizeof(float));
+#ifdef GPU
+ cuda_free(l->delta_gpu);
+ l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
+#endif
+}
+
void forward_cost_layer(cost_layer l, network_state state)
{
if (!state.truth) return;
if(l.cost_type == MASKED){
int i;
for(i = 0; i < l.batch*l.inputs; ++i){
- if(state.truth[i] == 0) state.input[i] = 0;
+ if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
}
}
- copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
- axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
+ if(l.cost_type == SMOOTH){
+ smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta);
+ } else {
+ copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
+ axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
+ }
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
//printf("cost: %f\n", *l.output);
}
void backward_cost_layer(const cost_layer l, network_state state)
{
- copy_cpu(l.batch*l.inputs, l.delta, 1, state.delta, 1);
+ axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
}
#ifdef GPU
@@ -80,11 +99,15 @@
{
if (!state.truth) return;
if (l.cost_type == MASKED) {
- mask_ongpu(l.batch*l.inputs, state.input, state.truth);
+ mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
}
-
- copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
- axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
+
+ if(l.cost_type == SMOOTH){
+ smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu);
+ } else {
+ copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
+ axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
+ }
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
@@ -92,7 +115,7 @@
void backward_cost_layer_gpu(const cost_layer l, network_state state)
{
- copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+ axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
}
#endif
--
Gitblit v1.10.0