From b714004546b97e9a43fae3e385dbefb56cecafb6 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 26 Oct 2017 15:04:26 +0000
Subject: [PATCH] Fixed bug with: net->seen

---
 src/network.c |  183 +++++++++++++++++++++------------------------
 1 files changed, 87 insertions(+), 96 deletions(-)

diff --git a/src/network.c b/src/network.c
index 32c3ba1..2d755ae 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,5 +1,6 @@
 #include <stdio.h>
 #include <time.h>
+#include <assert.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -8,14 +9,18 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
 #include "rnn_layer.h"
+#include "crnn_layer.h"
 #include "local_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "deconvolutional_layer.h"
 #include "detection_layer.h"
+#include "region_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
@@ -36,7 +41,7 @@
     net.momentum = 0;
     net.decay = 0;
     #ifdef GPU
-        if(gpu_index >= 0) update_network_gpu(net);
+        //if(net.gpu_index >= 0) update_network_gpu(net);
     #endif
 }
 
@@ -55,13 +60,16 @@
             for(i = 0; i < net.num_steps; ++i){
                 if(net.steps[i] > batch_num) return rate;
                 rate *= net.scales[i];
-                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
             }
             return rate;
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
+            if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
             return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case RANDOM:
+            return net.learning_rate * pow(rand_uniform(0,1), net.power);
         case SIG:
             return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
         default:
@@ -85,14 +93,22 @@
             return "connected";
         case RNN:
             return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
         case MAXPOOL:
             return "maxpool";
+        case REORG:
+            return "reorg";
         case AVGPOOL:
             return "avgpool";
         case SOFTMAX:
             return "softmax";
         case DETECTION:
             return "detection";
+        case REGION:
+            return "region";
         case DROPOUT:
             return "dropout";
         case CROP:
@@ -105,6 +121,8 @@
             return "shortcut";
         case NORMALIZATION:
             return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
         default:
             break;
     }
@@ -126,6 +144,7 @@
 
 void forward_network(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
         state.index = i;
@@ -133,39 +152,7 @@
         if(l.delta){
             scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        if(l.type == CONVOLUTIONAL){
-            forward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            forward_deconvolutional_layer(l, state);
-        } else if(l.type == ACTIVE){
-            forward_activation_layer(l, state);
-        } else if(l.type == LOCAL){
-            forward_local_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            forward_normalization_layer(l, state);
-        } else if(l.type == DETECTION){
-            forward_detection_layer(l, state);
-        } else if(l.type == CONNECTED){
-            forward_connected_layer(l, state);
-        } else if(l.type == RNN){
-            forward_rnn_layer(l, state);
-        } else if(l.type == CROP){
-            forward_crop_layer(l, state);
-        } else if(l.type == COST){
-            forward_cost_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            forward_softmax_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            forward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            forward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            forward_dropout_layer(l, state);
-        } else if(l.type == ROUTE){
-            forward_route_layer(l, net);
-        } else if(l.type == SHORTCUT){
-            forward_shortcut_layer(l, state);
-        }
+        l.forward(l, state);
         state.input = l.output;
     }
 }
@@ -177,22 +164,17 @@
     float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
-        } else if(l.type == CONNECTED){
-            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == RNN){
-            update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == LOCAL){
-            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
+        if(l.update){
+            l.update(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
 float *get_network_output(network net)
 {
+#ifdef GPU
+    if (gpu_index >= 0) return get_network_output_gpu(net);
+#endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -204,11 +186,7 @@
     float sum = 0;
     int count = 0;
     for(i = 0; i < net.n; ++i){
-        if(net.layers[i].type == COST){
-            sum += net.layers[i].output[0];
-            ++count;
-        }
-        if(net.layers[i].type == DETECTION){
+        if(net.layers[i].cost){
             sum += net.layers[i].cost[0];
             ++count;
         }
@@ -228,6 +206,7 @@
     int i;
     float *original_input = state.input;
     float *original_delta = state.delta;
+    state.workspace = net.workspace;
     for(i = net.n-1; i >= 0; --i){
         state.index = i;
         if(i == 0){
@@ -239,47 +218,17 @@
             state.delta = prev.delta;
         }
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            backward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            backward_deconvolutional_layer(l, state);
-        } else if(l.type == ACTIVE){
-            backward_activation_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            backward_normalization_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            if(i != 0) backward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            backward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            backward_dropout_layer(l, state);
-        } else if(l.type == DETECTION){
-            backward_detection_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            if(i != 0) backward_softmax_layer(l, state);
-        } else if(l.type == CONNECTED){
-            backward_connected_layer(l, state);
-        } else if(l.type == RNN){
-            backward_rnn_layer(l, state);
-        } else if(l.type == LOCAL){
-            backward_local_layer(l, state);
-        } else if(l.type == COST){
-            backward_cost_layer(l, state);
-        } else if(l.type == ROUTE){
-            backward_route_layer(l, net);
-        } else if(l.type == SHORTCUT){
-            backward_shortcut_layer(l, state);
-        }
+        l.backward(l, state);
     }
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    *net.seen += net.batch;
 #ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
 #endif
     network_state state;
+    *net.seen += net.batch;
     state.index = 0;
     state.net = net;
     state.input = x;
@@ -313,6 +262,7 @@
 
 float train_network(network net, data d)
 {
+    assert(d.X.rows % net.batch == 0);
     int batch = net.batch;
     int n = d.X.rows / batch;
     float *X = calloc(batch*d.X.cols, sizeof(float));
@@ -330,6 +280,7 @@
     return (float)sum/(n*batch);
 }
 
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -360,17 +311,29 @@
     int i;
     for(i = 0; i < net->n; ++i){
         net->layers[i].batch = b;
+#ifdef CUDNN
+        if(net->layers[i].type == CONVOLUTIONAL){
+            cudnn_convolutional_setup(net->layers + i);
+        }
+#endif
     }
 }
 
 int resize_network(network *net, int w, int h)
 {
+#ifdef GPU
+    cuda_set_device(net->gpu_index);
+    if(gpu_index >= 0){
+        cuda_free(net->workspace);
+    }
+#endif
     int i;
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
     net->h = h;
     int inputs = 0;
-    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    size_t workspace_size = 0;
+    //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
@@ -380,6 +343,12 @@
             resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REGION){
+            resize_region_layer(&l, w, h);
+        }else if(l.type == ROUTE){
+            resize_route_layer(&l, net);
+        }else if(l.type == REORG){
+            resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
             resize_avgpool_layer(&l, w, h);
         }else if(l.type == NORMALIZATION){
@@ -387,14 +356,33 @@
         }else if(l.type == COST){
             resize_cost_layer(&l, inputs);
         }else{
+			fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
+        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
         inputs = l.outputs;
         net->layers[i] = l;
         w = l.out_w;
         h = l.out_h;
         if(l.type == AVGPOOL) break;
     }
+#ifdef GPU
+    if(gpu_index >= 0){
+        if(net->input_gpu) {
+            cuda_free(*net->input_gpu);
+            *net->input_gpu = 0;
+            cuda_free(*net->truth_gpu);
+            *net->truth_gpu = 0;
+        }
+        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+    }else {
+        free(net->workspace);
+        net->workspace = calloc(1, workspace_size);
+    }
+#else
+    free(net->workspace);
+    net->workspace = calloc(1, workspace_size);
+#endif
     //fprintf(stderr, " Done!\n");
     return 0;
 }
@@ -593,7 +581,6 @@
     return acc;
 }
 
-
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
@@ -604,15 +591,19 @@
 
 void free_network(network net)
 {
-    int i;
-    for(i = 0; i < net.n; ++i){
-        free_layer(net.layers[i]);
-    }
-    free(net.layers);
-    #ifdef GPU
-    if(*net.input_gpu) cuda_free(*net.input_gpu);
-    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
-    if(net.input_gpu) free(net.input_gpu);
-    if(net.truth_gpu) free(net.truth_gpu);
-    #endif
+	int i;
+	for (i = 0; i < net.n; ++i) {
+		free_layer(net.layers[i]);
+	}
+	free(net.layers);
+#ifdef GPU
+	if (gpu_index >= 0) cuda_free(net.workspace);
+	else free(net.workspace);
+	if (*net.input_gpu) cuda_free(*net.input_gpu);
+	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+	if (net.input_gpu) free(net.input_gpu);
+	if (net.truth_gpu) free(net.truth_gpu);
+#else
+	free(net.workspace);
+#endif
 }

--
Gitblit v1.10.0