From b715671988a4f3e476586df52fa3bf052cce7f80 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 05 Dec 2013 21:17:16 +0000
Subject: [PATCH] Works well on MNIST

---
 src/convolutional_layer.c |  222 ++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 187 insertions(+), 35 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index f83622b..45b55b8 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,64 +1,121 @@
 #include "convolutional_layer.h"
+#include "utils.h"
+#include <stdio.h>
 
-double convolution_activation(double x)
+image get_convolutional_image(convolutional_layer layer)
 {
-    return x*(x>0);
+    int h,w,c;
+    if(layer.edge){
+        h = (layer.h-1)/layer.stride + 1;
+        w = (layer.w-1)/layer.stride + 1;
+    }else{
+        h = (layer.h - layer.size)/layer.stride+1;
+        w = (layer.h - layer.size)/layer.stride+1;
+    }
+    c = layer.n;
+    return double_to_image(h,w,c,layer.output);
 }
 
-double convolution_gradient(double x)
+image get_convolutional_delta(convolutional_layer layer)
 {
-    return (x>=0);
+    int h,w,c;
+    if(layer.edge){
+        h = (layer.h-1)/layer.stride + 1;
+        w = (layer.w-1)/layer.stride + 1;
+    }else{
+        h = (layer.h - layer.size)/layer.stride+1;
+        w = (layer.h - layer.size)/layer.stride+1;
+    }
+    c = layer.n;
+    return double_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
+convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
-    convolutional_layer layer;
-    layer.n = n;
-    layer.stride = stride;
-    layer.kernels = calloc(n, sizeof(image));
-    layer.kernel_updates = calloc(n, sizeof(image));
+    int out_h,out_w;
+    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->n = n;
+    layer->edge = 1;
+    layer->stride = stride;
+    layer->kernels = calloc(n, sizeof(image));
+    layer->kernel_updates = calloc(n, sizeof(image));
+    layer->kernel_momentum = calloc(n, sizeof(image));
+    layer->biases = calloc(n, sizeof(double));
+    layer->bias_updates = calloc(n, sizeof(double));
+    layer->bias_momentum = calloc(n, sizeof(double));
+    double scale = 2./(size*size);
     for(i = 0; i < n; ++i){
-        layer.kernels[i] = make_random_kernel(size, c);
-        layer.kernel_updates[i] = make_random_kernel(size, c);
+        //layer->biases[i] = rand_normal()*scale + scale;
+        layer->biases[i] = 0;
+        layer->kernels[i] = make_random_kernel(size, c, scale);
+        layer->kernel_updates[i] = make_random_kernel(size, c, 0);
+        layer->kernel_momentum[i] = make_random_kernel(size, c, 0);
     }
-    layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
-    layer.upsampled = make_image(h,w,n);
+    layer->size = 2*(size/2)+1;
+    if(layer->edge){
+        out_h = (layer->h-1)/layer->stride + 1;
+        out_w = (layer->w-1)/layer->stride + 1;
+    }else{
+        out_h = (layer->h - layer->size)/layer->stride+1;
+        out_w = (layer->h - layer->size)/layer->stride+1;
+    }
+    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+    layer->output = calloc(out_h * out_w * n, sizeof(double));
+    layer->delta  = calloc(out_h * out_w * n, sizeof(double));
+    layer->upsampled = make_image(h,w,n);
+    layer->activation = activation;
+
     return layer;
 }
 
-void run_convolutional_layer(const image input, const convolutional_layer layer)
+void forward_convolutional_layer(const convolutional_layer layer, double *in)
 {
-    int i;
+    image input = double_to_image(layer.h, layer.w, layer.c, in);
+    image output = get_convolutional_image(layer);
+    int i,j;
     for(i = 0; i < layer.n; ++i){
-        convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+        convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge);
     }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = convolution_activation(input.data[i]);
+    for(i = 0; i < output.c; ++i){
+        for(j = 0; j < output.h*output.w; ++j){
+            int index = i*output.h*output.w + j;
+            output.data[index] += layer.biases[i];
+            output.data[index] = activate(output.data[index], layer.activation);
+        }
     }
 }
 
-void backpropagate_layer(image input, convolutional_layer layer)
+void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta)
 {
     int i;
-    zero_image(input);
+
+    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
+    image out_delta = get_convolutional_delta(layer);
+    zero_image(in_delta);
+
     for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+        back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge);
     }
 }
 
-void backpropagate_layer_convolve(image input, convolutional_layer layer)
+void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
 {
+    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
+    image out_delta = get_convolutional_delta(layer);
     int i,j;
     for(i = 0; i < layer.n; ++i){
         rotate_image(layer.kernels[i]);
     }
 
-    zero_image(input);
-    upsample_image(layer.output, layer.stride, layer.upsampled);
-    for(j = 0; j < input.c; ++j){
+    zero_image(in_delta);
+    upsample_image(out_delta, layer.stride, layer.upsampled);
+    for(j = 0; j < in_delta.c; ++j){
         for(i = 0; i < layer.n; ++i){
-            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j);
+            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
         }
     }
 
@@ -67,20 +124,115 @@
     }
 }
 
-void error_convolutional_layer(image input, convolutional_layer layer)
+void gradient_delta_convolutional_layer(convolutional_layer layer)
 {
     int i;
+    image out_delta = get_convolutional_delta(layer);
+    image out_image = get_convolutional_image(layer);
+    for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){
+        out_delta.data[i] *= gradient(out_image.data[i], layer.activation);
+    }
+}
+
+void learn_convolutional_layer(convolutional_layer layer, double *input)
+{
+    int i;
+    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
+    image out_delta = get_convolutional_delta(layer);
+    gradient_delta_convolutional_layer(layer);
     for(i = 0; i < layer.n; ++i){
-        kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output);
+        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
+        layer.bias_updates[i] += avg_image_layer(out_delta, i);
+        //printf("%30.20lf\n", layer.bias_updates[i]);
     }
-    image old_input = copy_image(input);
-    zero_image(input);
+}
+
+void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
+{
+    //step = .01;
+    int i,j;
     for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+        layer.bias_momentum[i] = step*(layer.bias_updates[i]) 
+                                + momentum*layer.bias_momentum[i];
+        layer.biases[i] += layer.bias_momentum[i];
+        //layer.biases[i] = constrain(layer.biases[i],1.);
+        layer.bias_updates[i] = 0;
+        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
+        for(j = 0; j < pixels; ++j){
+            layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) 
+                                                + momentum*layer.kernel_momentum[i].data[j];
+            layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
+            //layer.kernels[i].data[j] = constrain(layer.kernels[i].data[j], 1.);
+        }
+        zero_image(layer.kernel_updates[i]);
     }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = input.data[i]*convolution_gradient(input.data[i]);
+}
+
+void visualize_convolutional_filters(convolutional_layer layer, char *window)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    int size = layer.size;
+    h = size;
+    w = (size + border) * layer.n - border;
+    c = layer.kernels[0].c;
+    if(c != 3 || !color){
+        h = (h+border)*c - border;
+        c = 1;
     }
-    free_image(old_input);
+
+    image filters = make_image(h,w,c);
+    int i,j;
+    for(i = 0; i < layer.n; ++i){
+        int w_offset = i*(size+border);
+        image k = layer.kernels[i];
+        image copy = copy_image(k);
+        /*
+        printf("Kernel %d - Bias: %f, Channels:",i,layer.biases[i]);
+        for(j = 0; j < k.c; ++j){
+            double a = avg_image_layer(k, j);
+            printf("%f, ", a);
+        }
+        printf("\n");
+        */
+        normalize_image(copy);
+        for(j = 0; j < k.c; ++j){
+            set_pixel(copy,0,0,j,layer.biases[i]);
+        }
+        if(c == 3 && color){
+            embed_image(copy, filters, 0, w_offset);
+        }
+        else{
+            for(j = 0; j < k.c; ++j){
+                int h_offset = j*(size+border);
+                image layer = get_image_layer(k, j);
+                embed_image(layer, filters, h_offset, w_offset);
+                free_image(layer);
+            }
+        }
+        free_image(copy);
+    }
+    image delta = get_convolutional_delta(layer);
+    image dc = collapse_image_layers(delta, 1);
+    char buff[256];
+    sprintf(buff, "%s: Delta", window);
+    show_image(dc, buff);
+    free_image(dc);
+    show_image(filters, window);
+    free_image(filters);
+}
+
+void visualize_convolutional_layer(convolutional_layer layer)
+{
+    int i;
+    char buff[256];
+    //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3);
+    for(i = 0; i < layer.n; ++i){
+        image k = layer.kernels[i];
+        sprintf(buff, "Kernel %d", i);
+        if(k.c <= 3) show_image(k, buff);
+        else show_image_layers(k, buff);
+    }
 }
 

--
Gitblit v1.10.0