From b715671988a4f3e476586df52fa3bf052cce7f80 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 05 Dec 2013 21:17:16 +0000
Subject: [PATCH] Works well on MNIST

---
 src/network.c |  244 ++++++++++++++++++++++++++++++++++++------------
 1 files changed, 182 insertions(+), 62 deletions(-)

diff --git a/src/network.c b/src/network.c
index 53184d9..faedb8c 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,9 +1,13 @@
+#include <stdio.h>
 #include "network.h"
 #include "image.h"
+#include "data.h"
+#include "utils.h"
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "softmax_layer.h"
 
 network make_network(int n)
 {
@@ -14,27 +18,29 @@
     return net;
 }
 
-void run_network(image input, network net)
+void forward_network(network net, double *input)
 {
     int i;
-    double *input_d = input.data;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            run_convolutional_layer(input, layer);
+            forward_convolutional_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            run_connected_layer(input_d, layer);
-            input_d = layer.output;
+            forward_connected_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            run_maxpool_layer(input, layer);
+            forward_maxpool_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
     }
 }
@@ -45,121 +51,235 @@
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step);
+            update_convolutional_layer(layer, step, 0.9, .01);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step);
-        }
-    }
-}
-
-void learn_network(image input, network net)
-{
-    int i;
-    image prev;
-    double *prev_p;
-    for(i = net.n-1; i >= 0; --i){
-        if(i == 0){
-            prev = input;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i-1];
-            prev = layer.output;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i-1];
-            prev = layer.output;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i-1];
-            prev_p = layer.output;
-        }
-
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(prev, layer);
-        }
-        else if(net.types[i] == MAXPOOL){
+        else if(net.types[i] == SOFTMAX){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(prev_p, layer);
+            update_connected_layer(layer, step, .9, 0);
         }
     }
 }
 
-
 double *get_network_output_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output.data;
-    }
-    else if(net.types[i] == MAXPOOL){
+        return layer.output;
+    } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output.data;
-    }
-    else if(net.types[i] == CONNECTED){
+        return layer.output;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.output;
+    } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
     }
     return 0;
 }
+double *get_network_output(network net)
+{
+    return get_network_output_layer(net, net.n-1);
+}
+
+double *get_network_delta_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.delta;
+    }
+    return 0;
+}
+
+double *get_network_delta(network net)
+{
+    return get_network_delta_layer(net, net.n-1);
+}
+
+void learn_network(network net, double *input)
+{
+    int i;
+    double *prev_input;
+    double *prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_layer(net, i-1);
+            prev_delta = get_network_delta_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            learn_convolutional_layer(layer, prev_input);
+            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            learn_connected_layer(layer, prev_input);
+            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+        }
+    }
+}
+
+void train_network_batch(network net, batch b)
+{
+    int i,j;
+    int k = get_network_output_size(net);
+    int correct = 0;
+    for(i = 0; i < b.n; ++i){
+        show_image(b.images[i], "Input");
+        forward_network(net, b.images[i].data);
+        image o = get_network_image(net);
+        if(o.h) show_image_collapsed(o, "Output");
+        double *output = get_network_output(net);
+        double *delta = get_network_delta(net);
+        int max_k = 0;
+        double max = 0;
+        for(j = 0; j < k; ++j){
+            delta[j] = b.truth[i][j]-output[j];
+            if(output[j] > max) {
+                max = output[j];
+                max_k = j;
+            }
+        }
+        if(b.truth[i][max_k]) ++correct;
+        printf("%f\n", (double)correct/(i+1));
+        learn_network(net, b.images[i].data);
+        update_network(net, .001);
+        if(i%100 == 0){
+            visualize_network(net);
+            cvWaitKey(100);
+        }
+    }
+    visualize_network(net);
+    print_network(net);
+    cvWaitKey(100);
+    printf("Accuracy: %f\n", (double)correct/b.n);
+}
 
 int get_network_output_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output.h*layer.output.w*layer.output.c;
+        image output = get_convolutional_image(layer);
+        return output.h*output.w*output.c;
     }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output.h*layer.output.w*layer.output.c;
+        image output = get_maxpool_image(layer);
+        return output.h*output.w*output.c;
     }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
     }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
     return 0;
 }
 
-double *get_network_output(network net)
+int get_network_output_size(network net)
 {
     int i = net.n-1;
-    return get_network_output_layer(net, i);
+    return get_network_output_size_layer(net, i);
 }
 
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
+        return get_convolutional_image(layer);
     }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
+        return get_maxpool_image(layer);
     }
-    return make_image(0,0,0);
+    return make_empty_image(0,0,0);
 }
 
 image get_network_image(network net)
 {
     int i;
     for(i = net.n-1; i >= 0; --i){
+        image m = get_network_image_layer(net, i);
+        if(m.h != 0) return m;
+    }
+    return make_empty_image(0,0,0);
+}
+
+void visualize_network(network net)
+{
+    int i;
+    char buff[256];
+    for(i = 0; i < net.n; ++i){
+        sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            return layer.output;
+            visualize_convolutional_filters(layer, buff);
+        }
+    } 
+}
+
+void print_network(network net)
+{
+    int i,j;
+    for(i = 0; i < net.n; ++i){
+        double *output;
+        int n = 0;
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_convolutional_image(layer);
+            n = m.h*m.w*m.c;
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            return layer.output;
+            output = layer.output;
+            image m = get_maxpool_image(layer);
+            n = m.h*m.w*m.c;
         }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.outputs;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.inputs;
+        }
+        double mean = mean_array(output, n);
+        double vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        if(n > 100) n = 100;
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
     }
-    return make_image(1,1,1);
 }
-

--
Gitblit v1.10.0