From b8e6e80c6d411d05a9e09f1e3676eb9a7f3ea0e8 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 03 Aug 2018 11:35:03 +0000
Subject: [PATCH] Added spatial Yolo v3 yolov3-spp.cfg

---
 src/network_kernels.cu |  386 +++++++++++++++++++++++++++++++++++++-----------------
 1 files changed, 265 insertions(+), 121 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 3e01019..681542f 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -22,7 +22,6 @@
 #include "region_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "reorg_layer.h"
 #include "avgpool_layer.h"
@@ -37,6 +36,10 @@
 #include "blas.h"
 }
 
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
 float * get_network_output_gpu_layer(network net, int i);
 float * get_network_delta_gpu_layer(network net, int i);
 float * get_network_output_gpu(network net);
@@ -51,50 +54,25 @@
         if(l.delta_gpu){
             fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
         }
-        if(l.type == CONVOLUTIONAL){
-            forward_convolutional_layer_gpu(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            forward_deconvolutional_layer_gpu(l, state);
-        } else if(l.type == ACTIVE){
-            forward_activation_layer_gpu(l, state);
-        } else if(l.type == LOCAL){
-            forward_local_layer_gpu(l, state);
-        } else if(l.type == DETECTION){
-            forward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            forward_region_layer_gpu(l, state);
-        } else if(l.type == CONNECTED){
-            forward_connected_layer_gpu(l, state);
-        } else if(l.type == RNN){
-            forward_rnn_layer_gpu(l, state);
-        } else if(l.type == GRU){
-            forward_gru_layer_gpu(l, state);
-        } else if(l.type == CRNN){
-            forward_crnn_layer_gpu(l, state);
-        } else if(l.type == CROP){
-            forward_crop_layer_gpu(l, state);
-        } else if(l.type == COST){
-            forward_cost_layer_gpu(l, state);
-        } else if(l.type == SOFTMAX){
-            forward_softmax_layer_gpu(l, state);
-        } else if(l.type == NORMALIZATION){
-            forward_normalization_layer_gpu(l, state);
-        } else if(l.type == BATCHNORM){
-            forward_batchnorm_layer_gpu(l, state);
-        } else if(l.type == MAXPOOL){
-            forward_maxpool_layer_gpu(l, state);
-        } else if(l.type == REORG){
-            forward_reorg_layer_gpu(l, state);
-        } else if(l.type == AVGPOOL){
-            forward_avgpool_layer_gpu(l, state);
-        } else if(l.type == DROPOUT){
-            forward_dropout_layer_gpu(l, state);
-        } else if(l.type == ROUTE){
-            forward_route_layer_gpu(l, net);
-        } else if(l.type == SHORTCUT){
-            forward_shortcut_layer_gpu(l, state);
-        }
+        l.forward_gpu(l, state);
+        if(net.wait_stream)
+            cudaStreamSynchronize(get_cuda_stream());
         state.input = l.output_gpu;
+/*
+        cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+        if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) {
+            int j;
+            for (j = 0; j < l.out_c; ++j) {
+                image img = make_image(l.out_w, l.out_h, 3);
+                memcpy(img.data, l.output+ l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
+                char buff[256];
+                sprintf(buff, "layer-%d slice-%d", i, j);
+                show_image(img, buff);
+            }
+            cvWaitKey(0); // wait press-key in console
+            cvDestroyAllWindows();
+        }
+*/
     }
 }
 
@@ -107,6 +85,7 @@
     for(i = net.n-1; i >= 0; --i){
         state.index = i;
         layer l = net.layers[i];
+        if (l.stopbackward) break;
         if(i == 0){
             state.input = original_input;
             state.delta = original_delta;
@@ -115,71 +94,21 @@
             state.input = prev.output_gpu;
             state.delta = prev.delta_gpu;
         }
-        if(l.type == CONVOLUTIONAL){
-            backward_convolutional_layer_gpu(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            backward_deconvolutional_layer_gpu(l, state);
-        } else if(l.type == ACTIVE){
-            backward_activation_layer_gpu(l, state);
-        } else if(l.type == LOCAL){
-            backward_local_layer_gpu(l, state);
-        } else if(l.type == MAXPOOL){
-            if(i != 0) backward_maxpool_layer_gpu(l, state);
-        } else if(l.type == REORG){
-            backward_reorg_layer_gpu(l, state);
-        } else if(l.type == AVGPOOL){
-            if(i != 0) backward_avgpool_layer_gpu(l, state);
-        } else if(l.type == DROPOUT){
-            backward_dropout_layer_gpu(l, state);
-        } else if(l.type == DETECTION){
-            backward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            backward_region_layer_gpu(l, state);
-        } else if(l.type == NORMALIZATION){
-            backward_normalization_layer_gpu(l, state);
-        } else if(l.type == BATCHNORM){
-            backward_batchnorm_layer_gpu(l, state);
-        } else if(l.type == SOFTMAX){
-            if(i != 0) backward_softmax_layer_gpu(l, state);
-        } else if(l.type == CONNECTED){
-            backward_connected_layer_gpu(l, state);
-        } else if(l.type == RNN){
-            backward_rnn_layer_gpu(l, state);
-        } else if(l.type == GRU){
-            backward_gru_layer_gpu(l, state);
-        } else if(l.type == CRNN){
-            backward_crnn_layer_gpu(l, state);
-        } else if(l.type == COST){
-            backward_cost_layer_gpu(l, state);
-        } else if(l.type == ROUTE){
-            backward_route_layer_gpu(l, net);
-        } else if(l.type == SHORTCUT){
-            backward_shortcut_layer_gpu(l, state);
-        }
+        l.backward_gpu(l, state);
     }
 }
 
 void update_network_gpu(network net)
 {
+    cuda_set_device(net.gpu_index);
     int i;
     int update_batch = net.batch*net.subdivisions;
     float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
-        } else if(l.type == CONNECTED){
-            update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == GRU){
-            update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == RNN){
-            update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == CRNN){
-            update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == LOCAL){
-            update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        l.t = get_current_batch(net);
+        if(l.update_gpu){
+            l.update_gpu(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
@@ -203,12 +132,21 @@
     state.delta = 0;
     state.truth = *net.truth_gpu;
     state.train = 1;
+#ifdef CUDNN_HALF
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        cuda_convert_f32_to_f16(l.weights_gpu, l.c*l.n*l.size*l.size, l.weights_gpu16);
+    }
+#endif
     forward_network_gpu(net, state);
+    //cudaStreamSynchronize(get_cuda_stream());
     backward_network_gpu(net, state);
 }
 
 float train_network_datum_gpu(network net, float *x, float *y)
 {
+    *net.seen += net.batch;
     forward_backward_network_gpu(net, x, y);
     float error = get_network_cost(net);
     if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
@@ -218,55 +156,259 @@
 
 typedef struct {
     network net;
-    float *X;
-    float *y;
+    data d;
+    float *err;
 } train_args;
 
 void *train_thread(void *ptr)
 {
     train_args args = *(train_args*)ptr;
-
-    cudaError_t status = cudaSetDevice(args.net.gpu_index);
-    check_error(status);
-    forward_backward_network_gpu(args.net, args.X, args.y);
     free(ptr);
+    cuda_set_device(args.net.gpu_index);
+    *args.err = train_network(args.net, args.d);
     return 0;
 }
 
-pthread_t train_network_in_thread(train_args args)
+pthread_t train_network_in_thread(network net, data d, float *err)
 {
     pthread_t thread;
     train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
-    *ptr = args;
+    ptr->net = net;
+    ptr->d = d;
+    ptr->err = err;
     if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
     return thread;
 }
 
-float train_networks(network *nets, int n, data d)
+void pull_updates(layer l)
 {
-    int batch = nets[0].batch;
-    float **X = (float **) calloc(n, sizeof(float *));
-    float **y = (float **) calloc(n, sizeof(float *));
-    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+    if(l.type == CONVOLUTIONAL){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.n*l.size*l.size*l.c);
+        if(l.scale_updates) cuda_pull_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+}
 
+void push_updates(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.n*l.size*l.size*l.c);
+        if(l.scale_updates) cuda_push_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+}
+
+void update_layer(layer l, network net)
+{
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
+    l.t = get_current_batch(net);
+    if(l.update_gpu){
+        l.update_gpu(l, update_batch, rate, net.momentum, net.decay);
+    }
+}
+
+void merge_weights(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        axpy_cpu(l.n, 1, l.biases, 1, base.biases, 1);
+        axpy_cpu(l.n*l.size*l.size*l.c, 1, l.weights, 1, base.weights, 1);
+        if (l.scales) {
+            axpy_cpu(l.n, 1, l.scales, 1, base.scales, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        axpy_cpu(l.outputs, 1, l.biases, 1, base.biases, 1);
+        axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, base.weights, 1);
+    }
+}
+
+void scale_weights(layer l, float s)
+{
+    if (l.type == CONVOLUTIONAL) {
+        scal_cpu(l.n, s, l.biases, 1);
+        scal_cpu(l.n*l.size*l.size*l.c, s, l.weights, 1);
+        if (l.scales) {
+            scal_cpu(l.n, s, l.scales, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        scal_cpu(l.outputs, s, l.biases, 1);
+        scal_cpu(l.outputs*l.inputs, s, l.weights, 1);
+    }
+}
+
+
+void pull_weights(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_pull_array(l.biases_gpu, l.biases, l.n);
+        cuda_pull_array(l.weights_gpu, l.weights, l.n*l.size*l.size*l.c);
+        if(l.scales) cuda_pull_array(l.scales_gpu, l.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
+        cuda_pull_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
+    }
+}
+
+void push_weights(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.biases_gpu, l.biases, l.n);
+        cuda_push_array(l.weights_gpu, l.weights, l.n*l.size*l.size*l.c);
+        if(l.scales) cuda_push_array(l.scales_gpu, l.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.biases_gpu, l.biases, l.outputs);
+        cuda_push_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
+    }
+}
+
+void distribute_weights(layer l, layer base)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.biases_gpu, base.biases, l.n);
+        cuda_push_array(l.weights_gpu, base.weights, l.n*l.size*l.size*l.c);
+        if(base.scales) cuda_push_array(l.scales_gpu, base.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.biases_gpu, base.biases, l.outputs);
+        cuda_push_array(l.weights_gpu, base.weights, l.outputs*l.inputs);
+    }
+}
+
+
+void merge_updates(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        axpy_cpu(l.n, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.n*l.size*l.size*l.c, 1, l.weight_updates, 1, base.weight_updates, 1);
+        if (l.scale_updates) {
+            axpy_cpu(l.n, 1, l.scale_updates, 1, base.scale_updates, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weight_updates, 1);
+    }
+}
+
+void distribute_updates(layer l, layer base)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.n);
+        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.n*l.size*l.size*l.c);
+        if(base.scale_updates) cuda_push_array(l.scale_updates_gpu, base.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.outputs);
+        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.outputs*l.inputs);
+    }
+}
+
+void sync_layer(network *nets, int n, int j)
+{
+    //printf("Syncing layer %d\n", j);
     int i;
+    network net = nets[0];
+    layer base = net.layers[j];
+    cuda_set_device(net.gpu_index);
+    pull_weights(base);
+    for (i = 1; i < n; ++i) {
+        cuda_set_device(nets[i].gpu_index);
+        layer l = nets[i].layers[j];
+        pull_weights(l);
+        merge_weights(l, base);
+    }
+    scale_weights(base, 1./n);
+    for (i = 0; i < n; ++i) {
+        cuda_set_device(nets[i].gpu_index);
+        layer l = nets[i].layers[j];
+        distribute_weights(l, base);
+    }
+    //printf("Done syncing layer %d\n", j);
+}
+
+typedef struct{
+    network *nets;
+    int n;
+    int j;
+} sync_args;
+
+void *sync_layer_thread(void *ptr)
+{
+    sync_args args = *(sync_args*)ptr;
+    sync_layer(args.nets, args.n, args.j);
+    free(ptr);
+    return 0;
+}
+
+pthread_t sync_layer_in_thread(network *nets, int n, int j)
+{
+    pthread_t thread;
+    sync_args *ptr = (sync_args *)calloc(1, sizeof(sync_args));
+    ptr->nets = nets;
+    ptr->n = n;
+    ptr->j = j;
+    if(pthread_create(&thread, 0, sync_layer_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+void sync_nets(network *nets, int n, int interval)
+{
+    int j;
+    int layers = nets[0].n;
+    pthread_t *threads = (pthread_t *) calloc(layers, sizeof(pthread_t));
+
+    *nets[0].seen += interval * (n-1) * nets[0].batch * nets[0].subdivisions;
+    for (j = 0; j < n; ++j){
+        *nets[j].seen = *nets[0].seen;
+    }
+    for (j = 0; j < layers; ++j) {
+        threads[j] = sync_layer_in_thread(nets, n, j);
+    }
+    for (j = 0; j < layers; ++j) {
+        pthread_join(threads[j], 0);
+    }
+    free(threads);
+}
+
+float train_networks(network *nets, int n, data d, int interval)
+{
+    int i;
+    int batch = nets[0].batch;
+    int subdivisions = nets[0].subdivisions;
+    assert(batch * subdivisions * n == d.X.rows);
+    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+    float *errors = (float *) calloc(n, sizeof(float));
+
     float sum = 0;
     for(i = 0; i < n; ++i){
-        X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
-        y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
-        get_next_batch(d, batch, i*batch, X[i], y[i]);
-        float err = train_network_datum(nets[i], X[i], y[i]);
-        sum += err;
+        data p = get_data_part(d, i, n);
+        threads[i] = train_network_in_thread(nets[i], p, errors + i);
     }
-    free(X);
-    free(y);
-    return (float)sum/(n*batch);
+    for(i = 0; i < n; ++i){
+        pthread_join(threads[i], 0);
+        //printf("%f\n", errors[i]);
+        sum += errors[i];
+    }
+    //cudaDeviceSynchronize();
+    if (get_current_batch(nets[0]) % interval == 0) {
+        printf("Syncing... ");
+        fflush(stdout);
+        sync_nets(nets, n, interval);
+        printf("Done!\n");
+    }
+    //cudaDeviceSynchronize();
+    free(threads);
+    free(errors);
+    return (float)sum/(n);
 }
 
 float *get_network_output_layer_gpu(network net, int i)
 {
     layer l = net.layers[i];
-    cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+    if(l.type != REGION) cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
     return l.output;
 }
 
@@ -279,6 +421,8 @@
 
 float *network_predict_gpu(network net, float *input)
 {
+    if (net.gpu_index != cuda_get_device())
+        cuda_set_device(net.gpu_index);
     int size = get_network_input_size(net) * net.batch;
     network_state state;
     state.index = 0;

--
Gitblit v1.10.0