From b8e6e80c6d411d05a9e09f1e3676eb9a7f3ea0e8 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 03 Aug 2018 11:35:03 +0000
Subject: [PATCH] Added spatial Yolo v3 yolov3-spp.cfg
---
src/region_layer.c | 277 ++++++++++++++++++++++++++++---------------------------
1 files changed, 142 insertions(+), 135 deletions(-)
diff --git a/src/region_layer.c b/src/region_layer.c
index 4aff75a..5167fb8 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -27,7 +27,7 @@
l.bias_updates = calloc(n*2, sizeof(float));
l.outputs = h*w*n*(classes + coords + 1);
l.inputs = l.outputs;
- l.max_boxes = max_boxes;
+ l.max_boxes = max_boxes;
l.truths = max_boxes*(5);
l.delta = calloc(batch*l.outputs, sizeof(float));
l.output = calloc(batch*l.outputs, sizeof(float));
@@ -53,8 +53,8 @@
void resize_region_layer(layer *l, int w, int h)
{
- int old_w = l->w;
- int old_h = l->h;
+ int old_w = l->w;
+ int old_h = l->h;
l->w = w;
l->h = h;
@@ -65,13 +65,13 @@
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
#ifdef GPU
- if (old_w < w || old_h < h) {
- cuda_free(l->delta_gpu);
- cuda_free(l->output_gpu);
+ if (old_w < w || old_h < h) {
+ cuda_free(l->delta_gpu);
+ cuda_free(l->output_gpu);
- l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
- l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
- }
+ l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+ l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ }
#endif
}
@@ -127,33 +127,34 @@
class_id = hier->parent[class_id];
}
*avg_cat += pred;
- } else {
- // Focal loss
- if (focal_loss) {
- // Focal Loss
- float alpha = 0.5; // 0.25 or 0.5
- //float gamma = 2; // hardcoded in many places of the grad-formula
+ } else {
+ // Focal loss
+ if (focal_loss) {
+ // Focal Loss
+ float alpha = 0.5; // 0.25 or 0.5
+ //float gamma = 2; // hardcoded in many places of the grad-formula
- int ti = index + class_id;
- float pt = output[ti] + 0.000000000000001F;
- //float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
- float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
+ int ti = index + class_id;
+ float pt = output[ti] + 0.000000000000001F;
+ // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
+ float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
+ //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
- for (n = 0; n < classes; ++n) {
- delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+ for (n = 0; n < classes; ++n) {
+ delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
- delta[index + n] *= alpha*grad;
+ delta[index + n] *= alpha*grad;
- if (n == class_id) *avg_cat += output[index + n];
- }
- }
- else {
- // default
- for (n = 0; n < classes; ++n) {
- delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
- if (n == class_id) *avg_cat += output[index + n];
- }
- }
+ if (n == class_id) *avg_cat += output[index + n];
+ }
+ }
+ else {
+ // default
+ for (n = 0; n < classes; ++n) {
+ delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+ if (n == class_id) *avg_cat += output[index + n];
+ }
+ }
}
}
@@ -169,9 +170,9 @@
static int entry_index(layer l, int batch, int location, int entry)
{
- int n = location / (l.w*l.h);
- int loc = location % (l.w*l.h);
- return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
+ int n = location / (l.w*l.h);
+ int loc = location % (l.w*l.h);
+ return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
}
void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
@@ -255,6 +256,8 @@
int best_class_id = -1;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(state.truth + t*5 + b*l.truths);
+ int class_id = state.truth[t * 5 + b*l.truths + 4];
+ if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
if(!truth.x) break;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
@@ -292,6 +295,12 @@
}
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(state.truth + t*5 + b*l.truths);
+ int class_id = state.truth[t * 5 + b*l.truths + 4];
+ if (class_id >= l.classes) {
+ printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1);
+ getchar();
+ continue; // if label contains class_id more than number of classes in the cfg-file
+ }
if(!truth.x) break;
float best_iou = 0;
@@ -338,8 +347,6 @@
l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
}
-
- int class_id = state.truth[t*5 + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
++count;
@@ -443,7 +450,7 @@
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
- //cudaStreamSynchronize(get_cuda_stream());
+ //cudaStreamSynchronize(get_cuda_stream());
network_state cpu_state = state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
@@ -453,7 +460,7 @@
free(cpu_state.input);
if(!state.train) return;
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
- //cudaStreamSynchronize(get_cuda_stream());
+ //cudaStreamSynchronize(get_cuda_stream());
if(cpu_state.truth) free(cpu_state.truth);
}
@@ -466,107 +473,107 @@
void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
{
- int i;
- int new_w = 0;
- int new_h = 0;
- if (((float)netw / w) < ((float)neth / h)) {
- new_w = netw;
- new_h = (h * netw) / w;
- }
- else {
- new_h = neth;
- new_w = (w * neth) / h;
- }
- for (i = 0; i < n; ++i) {
- box b = dets[i].bbox;
- b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
- b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
- b.w *= (float)netw / new_w;
- b.h *= (float)neth / new_h;
- if (!relative) {
- b.x *= w;
- b.w *= w;
- b.y *= h;
- b.h *= h;
- }
- dets[i].bbox = b;
- }
+ int i;
+ int new_w = 0;
+ int new_h = 0;
+ if (((float)netw / w) < ((float)neth / h)) {
+ new_w = netw;
+ new_h = (h * netw) / w;
+ }
+ else {
+ new_h = neth;
+ new_w = (w * neth) / h;
+ }
+ for (i = 0; i < n; ++i) {
+ box b = dets[i].bbox;
+ b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
+ b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
+ b.w *= (float)netw / new_w;
+ b.h *= (float)neth / new_h;
+ if (!relative) {
+ b.x *= w;
+ b.w *= w;
+ b.y *= h;
+ b.h *= h;
+ }
+ dets[i].bbox = b;
+ }
}
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
{
- int i, j, n, z;
- float *predictions = l.output;
- if (l.batch == 2) {
- float *flip = l.output + l.outputs;
- for (j = 0; j < l.h; ++j) {
- for (i = 0; i < l.w / 2; ++i) {
- for (n = 0; n < l.n; ++n) {
- for (z = 0; z < l.classes + l.coords + 1; ++z) {
- int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
- int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
- float swap = flip[i1];
- flip[i1] = flip[i2];
- flip[i2] = swap;
- if (z == 0) {
- flip[i1] = -flip[i1];
- flip[i2] = -flip[i2];
- }
- }
- }
- }
- }
- for (i = 0; i < l.outputs; ++i) {
- l.output[i] = (l.output[i] + flip[i]) / 2.;
- }
- }
- for (i = 0; i < l.w*l.h; ++i) {
- int row = i / l.w;
- int col = i % l.w;
- for (n = 0; n < l.n; ++n) {
- int index = n*l.w*l.h + i;
- for (j = 0; j < l.classes; ++j) {
- dets[index].prob[j] = 0;
- }
- int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
- int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
- int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
- float scale = l.background ? 1 : predictions[obj_index];
- dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
- dets[index].objectness = scale > thresh ? scale : 0;
- if (dets[index].mask) {
- for (j = 0; j < l.coords - 4; ++j) {
- dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
- }
- }
+ int i, j, n, z;
+ float *predictions = l.output;
+ if (l.batch == 2) {
+ float *flip = l.output + l.outputs;
+ for (j = 0; j < l.h; ++j) {
+ for (i = 0; i < l.w / 2; ++i) {
+ for (n = 0; n < l.n; ++n) {
+ for (z = 0; z < l.classes + l.coords + 1; ++z) {
+ int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+ int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+ float swap = flip[i1];
+ flip[i1] = flip[i2];
+ flip[i2] = swap;
+ if (z == 0) {
+ flip[i1] = -flip[i1];
+ flip[i2] = -flip[i2];
+ }
+ }
+ }
+ }
+ }
+ for (i = 0; i < l.outputs; ++i) {
+ l.output[i] = (l.output[i] + flip[i]) / 2.;
+ }
+ }
+ for (i = 0; i < l.w*l.h; ++i) {
+ int row = i / l.w;
+ int col = i % l.w;
+ for (n = 0; n < l.n; ++n) {
+ int index = n*l.w*l.h + i;
+ for (j = 0; j < l.classes; ++j) {
+ dets[index].prob[j] = 0;
+ }
+ int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
+ int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
+ int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
+ float scale = l.background ? 1 : predictions[obj_index];
+ dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
+ dets[index].objectness = scale > thresh ? scale : 0;
+ if (dets[index].mask) {
+ for (j = 0; j < l.coords - 4; ++j) {
+ dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
+ }
+ }
- int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
- if (l.softmax_tree) {
+ int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
+ if (l.softmax_tree) {
- hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
- if (map) {
- for (j = 0; j < 200; ++j) {
- int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
- float prob = scale*predictions[class_index];
- dets[index].prob[j] = (prob > thresh) ? prob : 0;
- }
- }
- else {
- int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
- dets[index].prob[j] = (scale > thresh) ? scale : 0;
- }
- }
- else {
- if (dets[index].objectness) {
- for (j = 0; j < l.classes; ++j) {
- int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
- float prob = scale*predictions[class_index];
- dets[index].prob[j] = (prob > thresh) ? prob : 0;
- }
- }
- }
- }
- }
- correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
+ hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
+ if (map) {
+ for (j = 0; j < 200; ++j) {
+ int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
+ float prob = scale*predictions[class_index];
+ dets[index].prob[j] = (prob > thresh) ? prob : 0;
+ }
+ }
+ else {
+ int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
+ dets[index].prob[j] = (scale > thresh) ? scale : 0;
+ }
+ }
+ else {
+ if (dets[index].objectness) {
+ for (j = 0; j < l.classes; ++j) {
+ int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
+ float prob = scale*predictions[class_index];
+ dets[index].prob[j] = (prob > thresh) ? prob : 0;
+ }
+ }
+ }
+ }
+ }
+ correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
}
--
Gitblit v1.10.0