From b95bf33cb5b296efb70a0c4b1c82c0f62286f52a Mon Sep 17 00:00:00 2001
From: Constantin Wenger <constantin.wenger@googlemail.com>
Date: Thu, 03 Feb 2022 20:18:17 +0000
Subject: [PATCH] added options to flip/rotate and specify different input resolutions also fixed displayed image to max 800x800 everything above will be scaled while keeping aspect ratio

---
 opencv_dnn.py |  267 ++++++++++++++++++++++++++++++++++++++++++-----------
 1 files changed, 211 insertions(+), 56 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
old mode 100644
new mode 100755
index 37ecaae..f525b0f
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -12,6 +12,7 @@
 from multiprocessing import Pool
 from config import Config
 import fetch_data
+import pytesseract
 
 
 """
@@ -28,7 +29,7 @@
     new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
     for hs in hash_size:
         new_pool['card_hash_%d' % hs] = np.NaN
-        new_pool['set_hash_%d' % hs] = np.NaN
+        new_pool['set_hash_%d' % 64] = np.NaN
         #new_pool['art_hash_%d' % hs] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
@@ -79,7 +80,7 @@
             cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
             cnts2 = cnts2[:10]
             if True:
-                cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3)
+                cv2.rawContours(img_cc, cnts2, -1, (0, 255, 0), 3)
                 #cv2.imshow('Contours', card_img)
                 #cv2.waitKey(10000)
             """
@@ -89,11 +90,12 @@
             #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
             img_card = Image.fromarray(card_img)
             img_set = Image.fromarray(set_img)
+            #cv2.imshow('Set' + card_names[0], set_img)
             for hs in hash_size:
                 card_hash = ih.phash(img_card, hash_size=hs)
-                set_hash = ih.whash(img_set, hash_size=hs)
+                set_hash = ih.phash(img_set, hash_size=64)
                 card_info['card_hash_%d' % hs] = card_hash
-                card_info['set_hash_%d' % hs] = set_hash
+                card_info['set_hash_%d' % 64] = set_hash
                 #print('Setting set_hash_%d' % hs)
                 #art_hash = ih.phash(img_art, hash_size=hs)
                 #card_info['art_hash_%d' % hs] = art_hash
@@ -113,8 +115,8 @@
     elif isinstance(hash_size, int):
         hash_size = [hash_size]
 
-    num_cores = 15
-    num_partitions = round(card_pool.shape[0]/100)
+    num_cores = 16
+    num_partitions = round(card_pool.shape[0]/1000)
     if num_partitions < min(num_cores, card_pool.shape[0]):
         num_partitions = min(num_cores, card_pool.shape[0])
     pool = Pool(num_cores)
@@ -262,14 +264,14 @@
     # Find the contour
     cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     if len(cnts) == 0:
-        #print('no contours')
+#        print('no contours')
         return []
     img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
     img_cont_base = img_cont.copy()
     cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
     cnts2 = cnts2[:10]
-    for i in range(0, len(cnts2)):
-        print(i, len(cnts2[i]))
+#    for i in range(0, len(cnts2)):
+#        print(i, len(cnts2[i]))
     if debug:
         cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
         cv2.imshow('Contours', img_cont)
@@ -288,6 +290,8 @@
         size = cv2.contourArea(cnt)
         peri = cv2.arcLength(cnt, True)
         approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
+        #print('Base Size:', size)
+        #print('Len Approx:', len(approx))
         if size >= size_thresh and len(approx) == 4:
             # lets see if we got a contour very close in size as child
             if i_child != -1:
@@ -304,28 +308,28 @@
                 c_cnt = c_list[0]  # the biggest child
                 if debug:
                     cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
-                    cv2.imshow('CCont %d' % i_cnt, img_ccont)
+                    cv2.imshow('CCont', img_ccont)
                 c_size = cv2.contourArea(c_cnt)
                 c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
                 if len(c_approx) == 4 and (c_size/size) > 0.85:
                     rect = cv2.minAreaRect(c_cnt)
                     box = cv2.boxPoints(rect)
                     box = np.intp(box)
-                    print(c_cnt)
-                    print(box)
+                    #print(c_cnt)
+                    #print(box)
 
-                    print('CSize:', c_size, '%:', c_size/size)
+                    #print('CSize:', c_size, '%:', c_size/size)
                     b2 = []
                     for x in box:
                         b2.append([x])
                     cnts_rect.append(np.array(b2))
                 else:
-                    print('CF:', (c_size/size))
-                    print('Size:', size)
+                    #print('CF:', (c_size/size))
+                    #print('Size:', size)
                     cnts_rect.append(approx)
             else:
                 #print('CF:', (c_size/size))
-                print('Size:', size)
+                #print('Size:', size)
                 cnts_rect.append(approx)
         else:
             if i_child != -1:
@@ -333,7 +337,7 @@
     return cnts_rect
 
 
-def draw_card_graph(exist_cards, card_pool, f_len):
+def draw_card_graph(exist_cards, card_pool, f_len, text_scale=0.8):
     """
     Given the history of detected cards in the current and several previous frames, draw a simple graph
     displaying the detected cards with its confidence level
@@ -349,7 +353,7 @@
     gap_sm = 10  # Small offset
     w_bar = 300  # Length of the confidence bar at 100%
     h_bar = 12
-    txt_scale = 0.8
+    txt_scale = text_scale
     n_cards_p_col = 4  # Number of cards displayed per one column
     w_img = gap + (w_card + gap + w_bar + gap) * 2  # Dimension of the entire graph (for 2 columns)
     h_img = 480
@@ -395,7 +399,7 @@
 
 
 def detect_frame(img, card_pool, hash_size=32, size_thresh=10000,
-                 out_path=None, display=True, debug=False):
+                 out_path=None, display=True, debug=False, scale=1.0, tesseract=False):
     """
     Identify all cards in the input frame, display or save the frame if needed
     :param img: input frame
@@ -412,7 +416,9 @@
     det_cards = []
     # Detect contours of all cards in the image
     cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
+    #print('Contours:', len(cnts))
     for i in range(len(cnts)):
+        #print('Contour', i)
         cnt = cnts[i]
         # For the region of the image covered by the contour, transform them into a rectangular image
         pts = np.float32([p[0] for p in cnt])
@@ -431,14 +437,63 @@
         '''
         img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
         img_card_size = img_warp.shape
-        print(img_card_size)
+
+        # cut out the part of the image that has the set icon
+        #print(img_card_size)
         cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)]
-        print(cut)
+        #print(cut)
         img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
-        print(img_set_part.shape)
+        #print(img_set_part.shape)
         img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
+        #print('img set')
         if debug:
             cv2.imshow("Set Img#%d" % i, img_set_part)
+        # tesseract takes a long time (200ms+), so if at all we should collect pictures
+        # and then if a card is detected successfully, add it to detected cards and run a background check with
+        # tesseract, if the identification with tesseract fails, mark somehow
+        # or only use tesseract in case of edition conflicts idk yet
+        # we will need to see what is needed
+        # also it is hard to detect with bad 500x600 px image
+        # maybe training it for the font would make it better or getting better resolution images
+        prefilter = True
+        if tesseract:
+            height, width, channels = img_warp.shape
+            blank_image = np.zeros((height, width, 3), np.uint8)
+            threshold = 70
+            athreshold = -30
+            athreshold = -cv2.getTrackbarPos("Threshold", "mainwindow")
+            cut = [round(img_card_size[0]*0.94),round(img_card_size[0]*0.98),round(img_card_size[1]*0.02),round(img_card_size[1]*0.3)]
+            blank_image = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
+            cv2.imshow("Tesseract Image", blank_image) 
+            if prefilter:
+                blank_image = cv2.cvtColor(blank_image, cv2.COLOR_BGR2GRAY)
+                blank_image = cv2.normalize(blank_image, None,  0, 255, cv2.NORM_MINMAX)
+                cv2.imshow("Normalized", blank_image)
+                result_image = cv2.adaptiveThreshold(blank_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 501, athreshold)
+                #_, result_image = cv2.threshold(blank_image, threshold, 255, cv2.THRESH_BINARY_INV)
+                cv2.imshow("TessImg", result_image)
+                tesseract_output = pytesseract.image_to_string(cv2.cvtColor(result_image, cv2.COLOR_GRAY2RGB))
+            else:
+                tesseract_output = pytesseract.image_to_string(cv2.cvtColor(blank_image, cv2.COLOR_BGR2RGB))
+            if "M20" in tesseract_output or 'm20' in tesseract_output:
+                tesseract_output = "M20"
+                print(tesseract_output)
+            else:
+                print(tesseract_output)
+                tesseract_output = "Set not detected"
+
+            #cv2.imshow("Tesseract Image", img_warp)
+            #img_gray = cv2.cvtColor(img_warp, cv2.COLOR_BGR2GRAY)
+            #img_blur = cv2.medianBlur(img_gray, 5)
+            #img_thresh = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5)
+            #cv2.imshow('Thres', img_thresh)
+            #tesseract_output = pytesseract.image_to_string(cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2RGB))
+            #if "M20" in tesseract_output or 'm20' in tesseract_output:
+            #    tesseract_output = "M20"
+            #    print(tesseract_output)
+            #else:
+            #    print(tesseract_output)
+            #    tesseract_output = "Set not detected"
 
         # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
         card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
@@ -454,20 +509,20 @@
         if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']:
             set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
             cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
-            print(list(card_pool.columns.values))
+#            print(list(card_pool.columns.values))
             candidates = []
             for ix in range(0, 2):
                 cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
                 cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd
-                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
+#                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
 
 
-            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size]
+            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % 64]
             cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
             conf = sorted(cd_data['set_hash_diff'])
-            print('Confs:', conf)
+            #print('Confs:', conf)
             best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
-            print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
+            #print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
 
             min_card = best_match
         card_name = min_card['name']
@@ -475,25 +530,32 @@
         det_cards.append((card_name, card_set))
 
         # Render the result, and display them if needed
+        image_header = card_name
+        if tesseract:
+            image_header += ' TS: ' + tesseract_output
         cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
-        cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])),
-                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        cv2.putText(img_result, image_header, (int(min(pts[0][0], pts[1][0])), int(min(pts[0][1], pts[1][1]))),
+                    cv2.FONT_HERSHEY_SIMPLEX, 0.5*scale+0.1, (255, 255, 255), 2)
         if debug:
             # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
             cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20),
-                        cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
+                        cv2.FONT_HERSHEY_SIMPLEX, 0.4*scale+0.1, (255, 255, 255), 1)
             cv2.imshow('card#%d' % i, img_warp)
     if display:
         cv2.imshow('Result', img_result)
-        cv2.waitKey(0)
+        inp = cv2.waitKey(0)
 
     if out_path is not None:
+        print(out_path)
         cv2.imwrite(out_path, img_result.astype(np.uint8))
     return det_cards, img_result
 
+def trackbardummy(v):
+    pass
 
 def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
-                 out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0):
+                 out_path=None, display=True, show_graph=True, debug=False,
+                 crop_x=0, crop_y=0, rotate=None, flip=None, tesseract=False):
     """
     Identify all cards in the continuous video stream, display or save the result if needed
     :param capture: input video stream
@@ -507,38 +569,75 @@
     :return: list of detected card's name/set and resulting image
     :return:
     """
+    if tesseract:
+        cv2.namedWindow('mainwindow')
+        cv2.createTrackbar("Threshold", "mainwindow", 30, 255, trackbardummy)
+    list_names_from = 0
+    # get some frame numers
+    f_width = 0
+    f_height = 0
+    f_scale = 1.0
+    if rotate is not None and (rotate == 0 or rotate == 2):
+        f_height = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)-2*crop_y)
+        f_width = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)-2*crop_x)
+    else:
+        f_width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH) - 2*crop_x)
+        f_height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT) - 2*crop_y)
+
+    if f_width > 800 or f_height > 800:
+        f_max = max(f_width, f_height)
+        f_scale = (800.0/float(f_max))
+
     # Get the dimension of the output video, and set it up
     if show_graph:
         img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
-        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x  + img_graph.shape[1]
-        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0])
+        width = int(f_width * f_scale)  + img_graph.shape[1]
+        height = max(int(f_height * f_scale), img_graph.shape[0])
         height += 200  # some space to display last detected cards
     else:
-        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
-        height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
+        width = int(f_width * f_scale)
+        height = int(f_height * f_scale)
     if out_path is not None:
         vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height))
     max_num_obj = 0
     f_len = 10  # number of frames to consider to check for existing cards
     exist_cards = {}
-
+    #print(f"fw{f_width} fh{f_height} w{width} h{height} fs{f_scale}")
     exist_card_single = {}
     written_out_cards = set()
     found_cards = []
     try:
         while True:
             ret, frame = capture.read()
-            croped_img = frame[crop_y:-crop_y, crop_x:-crop_x]
-            fimg = cv2.flip(croped_img, -1)
+            if not ret:
+                continue
+
+            if flip is not None:
+                frame = cv2.flip(frame, flip)
+            if rotate is not None:
+                frame = cv2.rotate(frame, rotate)
+
+            y_max_index = -crop_y
+            if crop_y == 0:
+                y_max_index = frame.shape[0]
+            x_max_index = -crop_x
+            if crop_x == 0:
+               x_max_index = frame.shape[1]
+
+            croped_img = frame[crop_y:y_max_index, crop_x:x_max_index]
+            fimg = croped_img
             start_time = time.time()
             if not ret:
                 # End of video
                 print("End of video. Press any key to exit")
                 cv2.waitKey(0)
                 break
+            if fimg is None:
+                print("flipped image is none")
+                break
             # Detect all cards from the current frame
             det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh,
-                                                 out_path=None, display=False, debug=debug)
+                                                 out_path=None, display=False, debug=debug, scale=1.0/f_scale, tesseract=tesseract)
             if show_graph:
                 # If the card was already detected in the previous frame, append 1 to the list
                 # If the card previously detected was not found in this trame, append 0 to the list
@@ -581,6 +680,7 @@
                         if key not in written_out_cards and key in det_card_map:
                             written_out_cards.add(key)
                             found_cards.append(det_card_map[key])
+                            list_names_from += 1
 
                 for key in det_card_map:
                     if key not in exist_card_single.keys():
@@ -599,9 +699,16 @@
                 # Draw the graph based on the history of detected cards, then concatenate it with the result image
                 img_graph = draw_card_graph(exist_cards, card_pool, f_len)
                 img_save = np.zeros((height, width, 3), dtype=np.uint8)
+                # resize result to out predefined area
+                if f_scale != 1.0:
+                    img_result = cv2.resize(img_result, (min(800, int(img_result.shape[1]*f_scale)), min(800, int(img_result.shape[0] * f_scale))), interpolation=cv2.INTER_LINEAR)
+                #print(f'ri_w{img_result.shape[1]} ri_h{img_result.shape[0]}')
+                #print(f"gi_w{img_graph.shape[1]} gi_h{img_graph.shape[0]}")
                 img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
                 img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
-                for c, card in enumerate(reversed(found_cards[-10:]), 1):
+                start_at = max(0,list_names_from-10) 
+                end_at = min(len(found_cards), list_names_from)
+                for c, card in enumerate(reversed(found_cards[start_at:end_at]), 1):
                     cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
             else:
                 img_save = img_result
@@ -618,17 +725,37 @@
             print('Elapsed time: %.2f ms' % elapsed_ms)
             if out_path is not None:
                 vid_writer.write(img_save.astype(np.uint8))
-            cv2.waitKey(1)
+            if debug:
+                print("Waiting for keypress to continue")
+                inp = cv2.waitKey(0)
+            else:
+                inp = cv2.waitKey(1)
+            if 'u' == chr(inp & 255):
+                if len(found_cards) > 0:
+                    del found_cards[list_names_from-1]
+                    list_names_from = min(len(found_cards), max(0, list_names_from))
+
+                #os.sleep(1000)
+            elif 'p' == chr(inp & 255):
+                list_names_from = max(1, list_names_from - 1)
+            elif 'o' == chr(inp & 255):
+                list_names_from = min(len(found_cards),list_names_from + 1)
+            elif 'q' == chr(inp & 255):
+                break
     except KeyboardInterrupt:
+        print("KeyboardInterrupt happened")
+    finally:
+        write_found_cards(found_cards)
         capture.release()
         if out_path is not None:
             vid_writer.release()
         cv2.destroyAllWindows()
 
-        with open('detect.txt', 'w') as of:
-            counter = collections.Counter(found_cards)
-            for key in counter:
-                of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n')
+def write_found_cards(found_cards):
+    with open('detect.txt', 'w') as of:
+        counter = collections.Counter(found_cards)
+        for key in counter:
+            of.write(f'{counter[key]} {key[0]} [{key[1].upper()}]\n')
 
 
 
@@ -654,7 +781,7 @@
         card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
         card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes)
     ch_key = 'card_hash_%d' % args.hash_size
-    set_key = 'set_hash_%d' % args.hash_size
+    set_key = 'set_hash_%d' % 64
     if ch_key not in card_pool.columns:
         # we did not generate this hash_size yet
         print('We need to add hash_size=%d' % (args.hash_size,))
@@ -664,23 +791,38 @@
 
     # Processing time is almost linear to the size of the database
     # Program can be much faster if the search scope for the card can be reduced
-    card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
+    #card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
 
     # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
     # significantly increases speed for subtracting hashes in the future.
     card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
     card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten())
-
+    print("Hash-Database setup done")
     # If the test file isn't given, use webcam to capture video
     if args.in_path is None:
-        capture = cv2.VideoCapture(0, cv2.CAP_V4L)
-        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
-        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
-        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
-        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
-                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200)
+        if args.stream_url is None:
+            print("Using webcam") 
+            capture = cv2.VideoCapture(0)
+            capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
+            capture.set(cv2.CAP_PROP_FRAME_WIDTH, args.rx)
+            capture.set(cv2.CAP_PROP_FRAME_HEIGHT, args.ry)
+        else:
+            print(f"Using stream {args.stream_url}")
+            capture = cv2.VideoCapture(args.stream_url)
+
+        thres = int((args.rx-2*args.crop_x)*(args.ry-2*args.crop_y)*(float(args.threshold_percent)/100))
+        print('Threshold:', thres)
+        if args.out_path is None:
+            out_path = None
+        else:
+            out_path = '%s/result.avi' % args.out_path
+        detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path,
+                     display=args.display, show_graph=args.show_graph, debug=args.debug,
+                     crop_x=args.crop_x, crop_y=args.crop_y, size_thresh=thres,
+                     rotate=args.rotate, flip=args.flip, tesseract=args.tesseract)
         capture.release()
     else:
+        print(f"Using image or video {args.in_path}")
         # Save the detection result if args.out_path is provided
         if args.out_path is None:
             out_path = None
@@ -696,13 +838,17 @@
         if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
             # Test file is an image
             img = cv2.imread(args.in_path)
+            if img is None:
+                print('Could not read', args.in_path)
             detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
                          debug=args.debug)
         else:
             # Test file is a video
             capture = cv2.VideoCapture(args.in_path)
             detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
-                         show_graph=args.show_graph, debug=args.debug)
+                         show_graph=args.show_graph, debug=args.debug,
+                         rotate=args.rotate, flip=args.flip, tesseract=args.tesseract)
+
             capture.release()
     pass
 
@@ -720,6 +866,15 @@
     parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False)
     parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', 
                         action='store_true', default=False)
+    parser.add_argument('-s', '--stream', dest='stream_url', type=str)
+    parser.add_argument('-cx', '--crop-x', dest='crop_x', help='crop x amount of pixel on each side in x-axis', type=int, default=0)
+    parser.add_argument('-cy', '--crop-y', dest='crop_y', help='crop x amount of pixel on each side in y-axis', type=int, default=0)
+    parser.add_argument('-tp', '--threshold-percent', dest='threshold_percent', help='percentage amount that the card image needs to take up to be detected',type=int, default=5)
+    parser.add_argument('-r', '--rotate', dest='rotate', help='Rotate image before usage 0 90_CLOCK, 1 180, 2 90 COUNTER_CLOCK', type=int, default=None)
+    parser.add_argument('-f', '--flip', dest='flip', help='flip image before using, this is done before rotation -1(both axis), 0(x-axis), 1(y-axis)', type=int, default=None)
+    parser.add_argument('-rx', '--resolution-x', dest='rx', help='X-Resolution of the source, defaults to 1920', type=int, default=1920)
+    parser.add_argument('-ry', '--resulution-y', dest='ry', help="Y-Resolution of the source, defaults to 1080", type=int, default=1080)
+    parser.add_argument('-t', '--tesseract', dest='tesseract', help='enable tesseract edition detection (not used only displayed)', action='store_true', default=False)
     args = parser.parse_args()
     if not args.display and args.out_path is None:
         # Then why the heck are you running this thing in the first place?

--
Gitblit v1.10.0