From baec87e7ac924ba5c4d8489fa3163d84dbadfe75 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 05 Feb 2016 20:49:06 +0000
Subject: [PATCH] more rnn stuff

---
 src/convolutional_layer.c |  707 ++++++++++++++++++++++++++++------------------------------
 1 files changed, 345 insertions(+), 362 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 1587ae8..159951d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,269 +1,434 @@
 #include "convolutional_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
 #include <stdio.h>
 #include <time.h>
 
-int convolutional_out_height(convolutional_layer layer)
+int convolutional_out_height(convolutional_layer l)
 {
-    int h = layer.h;
-    if (!layer.pad) h -= layer.size;
+    int h = l.h;
+    if (!l.pad) h -= l.size;
     else h -= 1;
-    return h/layer.stride + 1;
+    return h/l.stride + 1;
 }
 
-int convolutional_out_width(convolutional_layer layer)
+int convolutional_out_width(convolutional_layer l)
 {
-    int w = layer.w;
-    if (!layer.pad) w -= layer.size;
+    int w = l.w;
+    if (!l.pad) w -= l.size;
     else w -= 1;
-    return w/layer.stride + 1;
+    return w/l.stride + 1;
 }
 
-image get_convolutional_image(convolutional_layer layer)
+image get_convolutional_image(convolutional_layer l)
 {
     int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.output);
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.output);
 }
 
-image get_convolutional_delta(convolutional_layer layer)
+image get_convolutional_delta(convolutional_layer l)
 {
     int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.delta);
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    int i,b,f;
+    for(f = 0; f < n; ++f){
+        float sum = 0;
+        for(b = 0; b < batch; ++b){
+            for(i = 0; i < size; ++i){
+                int index = i + size*(f + n*b);
+                sum += delta[index] * x_norm[index];
+            }
+        }
+        scale_updates[f] += sum;
+    }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        mean_delta[i] = 0;
+        for (j = 0; j < batch; ++j) {
+            for (k = 0; k < spatial; ++k) {
+                int index = j*filters*spatial + i*spatial + k;
+                mean_delta[i] += delta[index];
+            }
+        }
+        mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+    }
+}
+void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        variance_delta[i] = 0;
+        for(j = 0; j < batch; ++j){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + i*spatial + k;
+                variance_delta[i] += delta[index]*(x[index] - mean[i]);
+            }
+        }
+        variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+    }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+    int f, j, k;
+    for(j = 0; j < batch; ++j){
+        for(f = 0; f < filters; ++f){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + f*spatial + k;
+                delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+            }
+        }
+    }
+}
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
 {
     int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
-    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+    convolutional_layer l = {0};
+    l.type = CONVOLUTIONAL;
 
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.binary = binary;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+    l.pad = pad;
+    l.batch_normalize = batch_normalize;
 
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    layer->n = n;
-    layer->batch = batch;
-    layer->stride = stride;
-    layer->size = size;
-    layer->pad = pad;
+    l.filters = calloc(c*n*size*size, sizeof(float));
+    l.filter_updates = calloc(c*n*size*size, sizeof(float));
 
-    layer->filters = calloc(c*n*size*size, sizeof(float));
-    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
+    l.biases = calloc(n, sizeof(float));
+    l.bias_updates = calloc(n, sizeof(float));
 
-    layer->biases = calloc(n, sizeof(float));
-    layer->bias_updates = calloc(n, sizeof(float));
-    layer->bias_momentum = calloc(n, sizeof(float));
-    float scale = 1./(size*size*c);
-    scale = .05;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
-    for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = .5;
+    // float scale = 1./sqrt(size*size*c);
+    float scale = sqrt(2./(size*size*c));
+    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
+    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
+    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
+
+    if(binary){
+        l.binary_filters = calloc(c*n*size*size, sizeof(float));
     }
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
-    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
-    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
-    #ifdef GPU
-    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
-    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
+    if(batch_normalize){
+        l.scales = calloc(n, sizeof(float));
+        l.scale_updates = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            l.scales[i] = 1;
+        }
 
-    layer->biases_cl = cl_make_array(layer->biases, n);
-    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
+        l.mean = calloc(n, sizeof(float));
+        l.variance = calloc(n, sizeof(float));
 
-    layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
-    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
-    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
-    #endif
-    layer->activation = activation;
+        l.rolling_mean = calloc(n, sizeof(float));
+        l.rolling_variance = calloc(n, sizeof(float));
+    }
+
+#ifdef GPU
+    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
+
+    l.biases_gpu = cuda_make_array(l.biases, n);
+    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+
+    l.scales_gpu = cuda_make_array(l.scales, n);
+    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
+    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
+    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+    if(binary){
+        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+    }
+
+    if(batch_normalize){
+        l.mean_gpu = cuda_make_array(l.mean, n);
+        l.variance_gpu = cuda_make_array(l.variance, n);
+
+        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+        l.mean_delta_gpu = cuda_make_array(l.mean, n);
+        l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+    }
+#endif
+    l.activation = activation;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
 
-    return layer;
+    return l;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void denormalize_convolutional_layer(convolutional_layer l)
 {
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
-
-    layer->col_image = realloc(layer->col_image,
-                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
-    layer->output = realloc(layer->output,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
-    layer->delta  = realloc(layer->delta,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    int i, j;
+    for(i = 0; i < l.n; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        for(j = 0; j < l.c*l.size*l.size; ++j){
+            l.filters[i*l.c*l.size*l.size + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+    }
 }
 
-void bias_output(const convolutional_layer layer)
+void test_convolutional_layer()
+{
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
+    l.batch_normalize = 1;
+    float data[] = {1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3};
+    network_state state = {0};
+    state.input = data;
+    forward_convolutional_layer(l, state);
+}
+
+void resize_convolutional_layer(convolutional_layer *l, int w, int h)
+{
+    l->w = w;
+    l->h = h;
+    int out_w = convolutional_out_width(*l);
+    int out_h = convolutional_out_height(*l);
+
+    l->out_w = out_w;
+    l->out_h = out_h;
+
+    l->outputs = l->out_h * l->out_w * l->out_c;
+    l->inputs = l->w * l->h * l->c;
+
+    l->col_image = realloc(l->col_image,
+            out_h*out_w*l->size*l->size*l->c*sizeof(float));
+    l->output = realloc(l->output,
+            l->batch*out_h * out_w * l->n*sizeof(float));
+    l->delta  = realloc(l->delta,
+            l->batch*out_h * out_w * l->n*sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->col_image_gpu);
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+
+    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+#endif
+}
+
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            for(j = 0; j < out_h*out_w; ++j){
-                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] += biases[i];
             }
         }
     }
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, float *in)
+void scale_bias(float *output, float *scales, int batch, int n, int size)
 {
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int i;
-
-    bias_output(layer);
-
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = out_h*out_w;
-
-    float *a = layer.filters;
-    float *b = layer.col_image;
-    float *c = layer.output;
-
-    im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, 
-        layer.size, layer.stride, layer.pad, b);
-
-    for(i = 0; i < layer.batch; ++i){
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        b += k*n;
-        c += n*m;
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
+            }
+        }
     }
-    activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
-void learn_bias_convolutional_layer(convolutional_layer layer)
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
 {
     int i,b;
-    int size = convolutional_out_height(layer)
-        *convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
         }
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *delta)
+void forward_convolutional_layer(const convolutional_layer l, network_state state)
+{
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    int i;
+
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
+
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = out_h*out_w;
+
+    float *a = l.filters;
+    float *b = l.col_image;
+    float *c = l.output;
+
+    for(i = 0; i < l.batch; ++i){
+        im2col_cpu(state.input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        state.input += l.c*l.h*l.w;
+    }
+
+    if(l.batch_normalize){
+        if(state.train){
+            mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);   
+            variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);   
+            normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);   
+        } else {
+            normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
+        }
+        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
+    activate_array(l.output, m*n*l.batch, l.activation);
+}
+
+void backward_convolutional_layer(convolutional_layer l, network_state state)
 {
     int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-    learn_bias_convolutional_layer(layer);
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = convolutional_out_height(l)*
+        convolutional_out_width(l);
 
-    float *a = layer.delta;
-    float *b = layer.col_image;
-    float *c = layer.filter_updates;
+    gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
+    backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
 
-    for(i = 0; i < layer.batch; ++i){
+    for(i = 0; i < l.batch; ++i){
+        float *a = l.delta + i*m*k;
+        float *b = l.col_image;
+        float *c = l.filter_updates;
+
+        float *im = state.input+i*l.c*l.h*l.w;
+
+        im2col_cpu(im, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
-        a += m*k;
-        b += k*n;
-    }
 
-    if(delta){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
+        if(state.delta){
+            a = l.filters;
+            b = l.delta + i*m*k;
+            c = l.col_image;
 
-        a = layer.filters;
-        b = layer.delta;
-        c = layer.col_image;
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-        for(i = 0; i < layer.batch; ++i){
-            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            b += k*n;
-            c += m*n;
+            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
         }
-
-        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
-        col2im_cpu(layer.col_image, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer)
+void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
 {
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+    int size = l.size*l.size*l.c*l.n;
+    axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.n, momentum, l.bias_updates, 1);
 
-    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
+    scal_cpu(size, momentum, l.filter_updates, 1);
 }
 
 
-image get_convolutional_filter(convolutional_layer layer, int i)
+image get_convolutional_filter(convolutional_layer l, int i)
 {
-    int h = layer.size;
-    int w = layer.size;
-    int c = layer.c;
-    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+    int h = l.size;
+    int w = l.size;
+    int c = l.c;
+    return float_to_image(w,h,c,l.filters+i*h*w*c);
 }
 
-image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+void rgbgr_filters(convolutional_layer l)
 {
-    image *filters = calloc(layer.n, sizeof(image));
-    int i,j,k,c;
-    if(!prev_filters){
-        for(i = 0; i < layer.n; ++i){
-            filters[i] = copy_image(get_convolutional_filter(layer, i));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_filter(l, i);
+        if (im.c == 3) {
+            rgbgr_image(im);
         }
     }
-    else{
-        image base = prev_filters[0];
-        for(i = 0; i < layer.n; ++i){
-            image filter = get_convolutional_filter(layer, i);
-            filters[i] = make_image(base.h, base.w, base.c);
-            for(j = 0; j < layer.size; ++j){
-                for(k = 0; k < layer.size; ++k){
-                    for(c = 0; c < layer.c; ++c){
-                        float weight = get_pixel(filter, j, k, c);
-                        image prev_filter = copy_image(prev_filters[c]);
-                        scale_image(prev_filter, weight);
-                        add_into_image(prev_filter, filters[i], 0,0);
-                        free_image(prev_filter);
-                    }
-                }
-            }
+}
+
+void rescale_filters(convolutional_layer l, float scale, float trans)
+{
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_filter(l, i);
+        if (im.c == 3) {
+            scale_image(im, scale);
+            float sum = sum_array(im.data, im.w*im.h*im.c);
+            l.biases[i] += sum*trans;
         }
     }
+}
+
+image *get_filters(convolutional_layer l)
+{
+    image *filters = calloc(l.n, sizeof(image));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        filters[i] = copy_image(get_convolutional_filter(l, i));
+        //normalize_image(filters[i]);
+    }
     return filters;
 }
 
-image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
 {
-    image *single_filters = weighted_sum_filters(layer, 0);
-    show_images(single_filters, layer.n, window);
+    image *single_filters = get_filters(l);
+    show_images(single_filters, l.n, window);
 
-    image delta = get_convolutional_image(layer);
+    image delta = get_convolutional_image(l);
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
     sprintf(buff, "%s: Output", window);
@@ -273,185 +438,3 @@
     return single_filters;
 }
 
-#ifdef GPU
-
-cl_kernel get_convolutional_learn_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
-{
-    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
-
-    cl_setup();
-    cl_kernel kernel = get_convolutional_learn_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.n};
-
-    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-cl_kernel get_convolutional_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void bias_output_gpu(const convolutional_layer layer)
-{
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int size = out_h*out_w;
-
-    cl_setup();
-    cl_kernel kernel = get_convolutional_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.batch, layer.n*size};
-
-    clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-//#define TIMEIT
-
-void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
-{
-    int i;
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-
-    bias_output_gpu(layer);
-
-    #ifdef TIMEIT
-    clock_t time = clock();
-    printf("Forward\n");
-    #endif
-
-    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-
-    #ifdef TIMEIT
-    clFinish(cl.queue);
-    printf("Im2col %f\n", sec(clock()-time));
-    time = clock();
-    #endif
-
-    for(i = 0; i < layer.batch; ++i){
-        cl_mem a = layer.filters_cl;
-        cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
-        cl_mem c = cl_sub_array(layer.output_cl, i*m*n, m*n);
-        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c,n);
-        clReleaseMemObject(b);
-        clReleaseMemObject(c);
-    }
-    #ifdef TIMEIT
-    clFinish(cl.queue);
-    printf("Gemm %f\n", sec(clock()-time));
-    #endif
-    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-    #ifdef TIMEIT
-    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
-    #endif
-}
-
-void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
-{
-    int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
-    learn_bias_convolutional_layer_ongpu(layer);
-
-    for(i = 0; i < layer.batch; ++i){
-        cl_mem a = cl_sub_array(layer.delta_cl,i*m*k, m*k);
-        cl_mem b = cl_sub_array(layer.col_image_cl,i*k*n, k*n);
-        cl_mem c = layer.filter_updates_cl;
-
-        gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
-
-        clReleaseMemObject(a);
-        clReleaseMemObject(b);
-    }
-    //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
-
-    if(delta_cl){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
-
-        for(i = 0; i < layer.batch; ++i){
-            cl_mem a = layer.filters_cl;
-            cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
-            cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
-
-            gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            clReleaseMemObject(b);
-            clReleaseMemObject(c);
-        }
-
-        scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
-        col2im_ongpu(layer.col_image_cl, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
-    }
-}
-
-void pull_convolutional_layer(convolutional_layer layer)
-{
-    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_read_array(layer.biases_cl, layer.biases, layer.n);
-}
-
-void push_convolutional_layer(convolutional_layer layer)
-{
-    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_write_array(layer.biases_cl, layer.biases, layer.n);
-}
-
-void update_convolutional_layer_gpu(convolutional_layer layer)
-{
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
-
-    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
-    pull_convolutional_layer(layer);
-}
-
-
-#endif
-

--
Gitblit v1.10.0