From be90b8e8cb6bbf3951a5e185aa43ccfdd4a03f4d Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 08 Feb 2018 22:50:35 +0000
Subject: [PATCH] Optimal params for optical flow tracking. Some small box fixes.

---
 src/parser.c | 1357 ++++++++++++++++++++++++++++++++++++++++------------------
 1 files changed, 921 insertions(+), 436 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 768f48b..67b4bfb 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -2,38 +2,76 @@
 #include <string.h>
 #include <stdlib.h>
 
-#include "parser.h"
+#include "activation_layer.h"
 #include "activations.h"
-#include "crop_layer.h"
-#include "cost_layer.h"
-#include "convolutional_layer.h"
+#include "assert.h"
+#include "avgpool_layer.h"
+#include "batchnorm_layer.h"
+#include "blas.h"
 #include "connected_layer.h"
+#include "convolutional_layer.h"
+#include "cost_layer.h"
+#include "crnn_layer.h"
+#include "crop_layer.h"
+#include "detection_layer.h"
+#include "dropout_layer.h"
+#include "gru_layer.h"
+#include "list.h"
+#include "local_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
-#include "softmax_layer.h"
-#include "dropout_layer.h"
-#include "freeweight_layer.h"
-#include "list.h"
 #include "option_list.h"
+#include "parser.h"
+#include "region_layer.h"
+#include "reorg_layer.h"
+#include "rnn_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
+#include "softmax_layer.h"
 #include "utils.h"
-#include "opencl.h"
+#include <stdint.h>
 
 typedef struct{
     char *type;
     list *options;
 }section;
 
-int is_convolutional(section *s);
-int is_connected(section *s);
-int is_maxpool(section *s);
-int is_dropout(section *s);
-int is_freeweight(section *s);
-int is_softmax(section *s);
-int is_crop(section *s);
-int is_cost(section *s);
-int is_normalization(section *s);
 list *read_cfg(char *filename);
 
+LAYER_TYPE string_to_layer_type(char * type)
+{
+
+    if (strcmp(type, "[shortcut]")==0) return SHORTCUT;
+    if (strcmp(type, "[crop]")==0) return CROP;
+    if (strcmp(type, "[cost]")==0) return COST;
+    if (strcmp(type, "[detection]")==0) return DETECTION;
+    if (strcmp(type, "[region]")==0) return REGION;
+    if (strcmp(type, "[local]")==0) return LOCAL;
+    if (strcmp(type, "[conv]")==0
+            || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
+    if (strcmp(type, "[activation]")==0) return ACTIVE;
+    if (strcmp(type, "[net]")==0
+            || strcmp(type, "[network]")==0) return NETWORK;
+    if (strcmp(type, "[crnn]")==0) return CRNN;
+    if (strcmp(type, "[gru]")==0) return GRU;
+    if (strcmp(type, "[rnn]")==0) return RNN;
+    if (strcmp(type, "[conn]")==0
+            || strcmp(type, "[connected]")==0) return CONNECTED;
+    if (strcmp(type, "[max]")==0
+            || strcmp(type, "[maxpool]")==0) return MAXPOOL;
+    if (strcmp(type, "[reorg]")==0) return REORG;
+    if (strcmp(type, "[avg]")==0
+            || strcmp(type, "[avgpool]")==0) return AVGPOOL;
+    if (strcmp(type, "[dropout]")==0) return DROPOUT;
+    if (strcmp(type, "[lrn]")==0
+            || strcmp(type, "[normalization]")==0) return NORMALIZATION;
+    if (strcmp(type, "[batchnorm]")==0) return BATCHNORM;
+    if (strcmp(type, "[soft]")==0
+            || strcmp(type, "[softmax]")==0) return SOFTMAX;
+    if (strcmp(type, "[route]")==0) return ROUTE;
+    return BLANK;
+}
+
 void free_section(section *s)
 {
     free(s->type);
@@ -66,343 +104,612 @@
     }
 }
 
-convolutional_layer *parse_convolutional(list *options, network *net, int count)
+typedef struct size_params{
+    int batch;
+    int inputs;
+    int h;
+    int w;
+    int c;
+    int index;
+    int time_steps;
+    network net;
+} size_params;
+
+local_layer parse_local(list *options, size_params params)
 {
-    int h,w,c;
-    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
-    char *weights = option_find_str(options, "weights", 0);
-    char *biases = option_find_str(options, "biases", 0);
-    parse_data(weights, layer->filters, c*n*size*size);
-    parse_data(biases, layer->biases, n);
-    #ifdef GPU
-    push_convolutional_layer(*layer);
-    #endif
-    option_unused(options);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before local layer must output image.");
+
+    local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
+
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network *net, int count)
+convolutional_layer parse_convolutional(list *options, size_params params)
 {
-    int input;
-    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int_quiet(options, "pad",0);
+    int padding = option_find_int_quiet(options, "padding",0);
+    if(pad) padding = size/2;
+
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int binary = option_find_int_quiet(options, "binary", 0);
+    int xnor = option_find_int_quiet(options, "xnor", 0);
+
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
+    layer.flipped = option_find_int_quiet(options, "flipped", 0);
+    layer.dot = option_find_float_quiet(options, "dot", 0);
+    if(params.net.adam){
+        layer.B1 = params.net.B1;
+        layer.B2 = params.net.B2;
+        layer.eps = params.net.eps;
+    }
+
+    return layer;
+}
+
+layer parse_crnn(list *options, size_params params)
+{
+    int output_filters = option_find_int(options, "output_filters",1);
+    int hidden_filters = option_find_int(options, "hidden_filters",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
+layer parse_rnn(list *options, size_params params)
+{
     int output = option_find_int(options, "output",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    int hidden = option_find_int(options, "hidden",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
-    char *weights = option_find_str(options, "weights", 0);
-    char *biases = option_find_str(options, "biases", 0);
-    parse_data(biases, layer->biases, output);
-    parse_data(weights, layer->weights, input*output);
-    #ifdef GPU
-    push_connected_layer(*layer);
-    #endif
-    option_unused(options);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int logistic = option_find_int_quiet(options, "logistic", 0);
+
+    layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
+layer parse_gru(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
+
+    return l;
+}
+
+connected_layer parse_connected(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
+
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network *net, int count)
+softmax_layer parse_softmax(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
-    option_unused(options);
+    int groups = option_find_int_quiet(options, "groups",1);
+    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
+    layer.temperature = option_find_float_quiet(options, "temperature", 1);
+    char *tree_file = option_find_str(options, "tree", 0);
+    if (tree_file) layer.softmax_tree = read_tree(tree_file);
     return layer;
 }
 
-cost_layer *parse_cost(list *options, network *net, int count)
+layer parse_region(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
+    int coords = option_find_int(options, "coords", 4);
+    int classes = option_find_int(options, "classes", 20);
+    int num = option_find_int(options, "num", 1);
+
+    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
+    assert(l.outputs == params.inputs);
+
+    l.log = option_find_int_quiet(options, "log", 0);
+    l.sqrt = option_find_int_quiet(options, "sqrt", 0);
+
+	l.small_object = option_find_int(options, "small_object", 0);
+    l.softmax = option_find_int(options, "softmax", 0);
+    l.max_boxes = option_find_int_quiet(options, "max",30);
+    l.jitter = option_find_float(options, "jitter", .2);
+    l.rescore = option_find_int_quiet(options, "rescore",0);
+
+    l.thresh = option_find_float(options, "thresh", .5);
+    l.classfix = option_find_int_quiet(options, "classfix", 0);
+    l.absolute = option_find_int_quiet(options, "absolute", 0);
+    l.random = option_find_int_quiet(options, "random", 0);
+
+    l.coord_scale = option_find_float(options, "coord_scale", 1);
+    l.object_scale = option_find_float(options, "object_scale", 1);
+    l.noobject_scale = option_find_float(options, "noobject_scale", 1);
+    l.class_scale = option_find_float(options, "class_scale", 1);
+    l.bias_match = option_find_int_quiet(options, "bias_match",0);
+
+    char *tree_file = option_find_str(options, "tree", 0);
+    if (tree_file) l.softmax_tree = read_tree(tree_file);
+    char *map_file = option_find_str(options, "map", 0);
+    if (map_file) l.map = read_map(map_file);
+
+    char *a = option_find_str(options, "anchors", 0);
+    if(a){
+        int len = strlen(a);
+        int n = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (a[i] == ',') ++n;
+        }
+        for(i = 0; i < n; ++i){
+            float bias = atof(a);
+            l.biases[i] = bias;
+            a = strchr(a, ',')+1;
+        }
     }
+    return l;
+}
+detection_layer parse_detection(list *options, size_params params)
+{
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 0);
+    int num = option_find_int(options, "num", 1);
+    int side = option_find_int(options, "side", 7);
+    detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
+
+    layer.softmax = option_find_int(options, "softmax", 0);
+    layer.sqrt = option_find_int(options, "sqrt", 0);
+
+    layer.max_boxes = option_find_int_quiet(options, "max",30);
+    layer.coord_scale = option_find_float(options, "coord_scale", 1);
+    layer.forced = option_find_int(options, "forced", 0);
+    layer.object_scale = option_find_float(options, "object_scale", 1);
+    layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
+    layer.class_scale = option_find_float(options, "class_scale", 1);
+    layer.jitter = option_find_float(options, "jitter", .2);
+    layer.random = option_find_int_quiet(options, "random", 0);
+    layer.reorg = option_find_int_quiet(options, "reorg", 0);
+    return layer;
+}
+
+cost_layer parse_cost(list *options, size_params params)
+{
     char *type_s = option_find_str(options, "type", "sse");
     COST_TYPE type = get_cost_type(type_s);
-    cost_layer *layer = make_cost_layer(net->batch, input, type);
-    option_unused(options);
+    float scale = option_find_float_quiet(options, "scale",1);
+    cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
+    layer.ratio =  option_find_float_quiet(options, "ratio",0);
     return layer;
 }
 
-crop_layer *parse_crop(list *options, network *net, int count)
+crop_layer parse_crop(list *options, size_params params)
 {
-    float learning_rate, momentum, decay;
-    int h,w,c;
     int crop_height = option_find_int(options, "crop_height",1);
     int crop_width = option_find_int(options, "crop_width",1);
     int flip = option_find_int(options, "flip",0);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before crop layer must output image.");
-    }
-    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
-    option_unused(options);
+    float angle = option_find_float(options, "angle",0);
+    float saturation = option_find_float(options, "saturation",1);
+    float exposure = option_find_float(options, "exposure",1);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before crop layer must output image.");
+
+    int noadjust = option_find_int_quiet(options, "noadjust",0);
+
+    crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
+    l.shift = option_find_float(options, "shift", 0);
+    l.noadjust = noadjust;
+    return l;
+}
+
+layer parse_reorg(list *options, size_params params)
+{
+    int stride = option_find_int(options, "stride",1);
+    int reverse = option_find_int_quiet(options, "reverse",0);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before reorg layer must output image.");
+
+    layer layer = make_reorg_layer(batch,w,h,c,stride,reverse);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network *net, int count)
+maxpool_layer parse_maxpool(list *options, size_params params)
 {
-    int h,w,c;
     int stride = option_find_int(options, "stride",1);
     int size = option_find_int(options, "size",stride);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
-    option_unused(options);
+    int padding = option_find_int_quiet(options, "padding", (size-1)/2);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
+
+    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding);
     return layer;
 }
 
-freeweight_layer *parse_freeweight(list *options, network *net, int count)
+avgpool_layer parse_avgpool(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
-    option_unused(options);
+    int batch,w,h,c;
+    w = params.w;
+    h = params.h;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before avgpool layer must output image.");
+
+    avgpool_layer layer = make_avgpool_layer(batch,w,h,c);
     return layer;
 }
 
-dropout_layer *parse_dropout(list *options, network *net, int count)
+dropout_layer parse_dropout(list *options, size_params params)
 {
-    int input;
     float probability = option_find_float(options, "probability", .5);
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-        float learning_rate = option_find_float(options, "learning_rate", .001);
-        float momentum = option_find_float(options, "momentum", .9);
-        float decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
-    option_unused(options);
+    dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
+    layer.out_w = params.w;
+    layer.out_h = params.h;
+    layer.out_c = params.c;
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network *net, int count)
+layer parse_normalization(list *options, size_params params)
 {
-    int h,w,c;
-    int size = option_find_int(options, "size",1);
-    float alpha = option_find_float(options, "alpha", 0.);
-    float beta = option_find_float(options, "beta", 1.);
-    float kappa = option_find_float(options, "kappa", 1.);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
+    float alpha = option_find_float(options, "alpha", .0001);
+    float beta =  option_find_float(options, "beta" , .75);
+    float kappa = option_find_float(options, "kappa", 1);
+    int size = option_find_int(options, "size", 5);
+    layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa);
+    return l;
+}
+
+layer parse_batchnorm(list *options, size_params params)
+{
+    layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c);
+    return l;
+}
+
+layer parse_shortcut(list *options, size_params params, network net)
+{
+    char *l = option_find(options, "from");   
+    int index = atoi(l);
+    if(index < 0) index = params.index + index;
+
+    int batch = params.batch;
+    layer from = net.layers[index];
+
+    layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);
+
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+    s.activation = activation;
+    return s;
+}
+
+
+layer parse_activation(list *options, size_params params)
+{
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+
+    layer l = make_activation_layer(params.batch, params.inputs, activation);
+
+    l.out_h = params.h;
+    l.out_w = params.w;
+    l.out_c = params.c;
+    l.h = params.h;
+    l.w = params.w;
+    l.c = params.c;
+
+    return l;
+}
+
+route_layer parse_route(list *options, size_params params, network net)
+{
+    char *l = option_find(options, "layers");   
+    int len = strlen(l);
+    if(!l) error("Route Layer must specify input layers");
+    int n = 1;
+    int i;
+    for(i = 0; i < len; ++i){
+        if (l[i] == ',') ++n;
     }
-    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
-    option_unused(options);
+
+    int *layers = calloc(n, sizeof(int));
+    int *sizes = calloc(n, sizeof(int));
+    for(i = 0; i < n; ++i){
+        int index = atoi(l);
+        l = strchr(l, ',')+1;
+        if(index < 0) index = params.index + index;
+        layers[i] = index;
+        sizes[i] = net.layers[index].outputs;
+    }
+    int batch = params.batch;
+
+    route_layer layer = make_route_layer(batch, n, layers, sizes);
+
+    convolutional_layer first = net.layers[layers[0]];
+    layer.out_w = first.out_w;
+    layer.out_h = first.out_h;
+    layer.out_c = first.out_c;
+    for(i = 1; i < n; ++i){
+        int index = layers[i];
+        convolutional_layer next = net.layers[index];
+        if(next.out_w == first.out_w && next.out_h == first.out_h){
+            layer.out_c += next.out_c;
+        }else{
+            layer.out_h = layer.out_w = layer.out_c = 0;
+        }
+    }
+
     return layer;
 }
 
+learning_rate_policy get_policy(char *s)
+{
+    if (strcmp(s, "random")==0) return RANDOM;
+    if (strcmp(s, "poly")==0) return POLY;
+    if (strcmp(s, "constant")==0) return CONSTANT;
+    if (strcmp(s, "step")==0) return STEP;
+    if (strcmp(s, "exp")==0) return EXP;
+    if (strcmp(s, "sigmoid")==0) return SIG;
+    if (strcmp(s, "steps")==0) return STEPS;
+    fprintf(stderr, "Couldn't find policy %s, going with constant\n", s);
+    return CONSTANT;
+}
+
+void parse_net_options(list *options, network *net)
+{
+    net->batch = option_find_int(options, "batch",1);
+    net->learning_rate = option_find_float(options, "learning_rate", .001);
+    net->momentum = option_find_float(options, "momentum", .9);
+    net->decay = option_find_float(options, "decay", .0001);
+    int subdivs = option_find_int(options, "subdivisions",1);
+    net->time_steps = option_find_int_quiet(options, "time_steps",1);
+    net->batch /= subdivs;
+    net->batch *= net->time_steps;
+    net->subdivisions = subdivs;
+
+    net->adam = option_find_int_quiet(options, "adam", 0);
+    if(net->adam){
+        net->B1 = option_find_float(options, "B1", .9);
+        net->B2 = option_find_float(options, "B2", .999);
+        net->eps = option_find_float(options, "eps", .000001);
+    }
+
+    net->h = option_find_int_quiet(options, "height",0);
+    net->w = option_find_int_quiet(options, "width",0);
+    net->c = option_find_int_quiet(options, "channels",0);
+    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
+    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
+
+    net->angle = option_find_float_quiet(options, "angle", 0);
+    net->aspect = option_find_float_quiet(options, "aspect", 1);
+    net->saturation = option_find_float_quiet(options, "saturation", 1);
+    net->exposure = option_find_float_quiet(options, "exposure", 1);
+    net->hue = option_find_float_quiet(options, "hue", 0);
+	net->power = option_find_float_quiet(options, "power", 4);
+
+    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+
+    char *policy_s = option_find_str(options, "policy", "constant");
+    net->policy = get_policy(policy_s);
+    net->burn_in = option_find_int_quiet(options, "burn_in", 0);
+    if(net->policy == STEP){
+        net->step = option_find_int(options, "step", 1);
+        net->scale = option_find_float(options, "scale", 1);
+    } else if (net->policy == STEPS){
+        char *l = option_find(options, "steps");   
+        char *p = option_find(options, "scales");   
+        if(!l || !p) error("STEPS policy must have steps and scales in cfg file");
+
+        int len = strlen(l);
+        int n = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (l[i] == ',') ++n;
+        }
+        int *steps = calloc(n, sizeof(int));
+        float *scales = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            int step    = atoi(l);
+            float scale = atof(p);
+            l = strchr(l, ',')+1;
+            p = strchr(p, ',')+1;
+            steps[i] = step;
+            scales[i] = scale;
+        }
+        net->scales = scales;
+        net->steps = steps;
+        net->num_steps = n;
+    } else if (net->policy == EXP){
+        net->gamma = option_find_float(options, "gamma", 1);
+    } else if (net->policy == SIG){
+        net->gamma = option_find_float(options, "gamma", 1);
+        net->step = option_find_int(options, "step", 1);
+    } else if (net->policy == POLY || net->policy == RANDOM){
+        //net->power = option_find_float(options, "power", 1);
+    }
+    net->max_batches = option_find_int(options, "max_batches", 0);
+}
+
+int is_network(section *s)
+{
+    return (strcmp(s->type, "[net]")==0
+            || strcmp(s->type, "[network]")==0);
+}
+
 network parse_network_cfg(char *filename)
 {
-    list *sections = read_cfg(filename);
-    network net = make_network(sections->size, 0);
+	return parse_network_cfg_custom(filename, 0);
+}
 
+network parse_network_cfg_custom(char *filename, int batch)
+{
+    list *sections = read_cfg(filename);
     node *n = sections->front;
+    if(!n) error("Config file has no sections");
+    network net = make_network(sections->size - 1);
+    net.gpu_index = gpu_index;
+    size_params params;
+
+    section *s = (section *)n->val;
+    list *options = s->options;
+    if(!is_network(s)) error("First section must be [net] or [network]");
+    parse_net_options(options, &net);
+
+    params.h = net.h;
+    params.w = net.w;
+    params.c = net.c;
+    params.inputs = net.inputs;
+	if (batch > 0) net.batch = batch;
+    params.batch = net.batch;
+    params.time_steps = net.time_steps;
+    params.net = net;
+
+    size_t workspace_size = 0;
+    n = n->next;
     int count = 0;
+    free_section(s);
+    fprintf(stderr, "layer     filters    size              input                output\n");
     while(n){
-        section *s = (section *)n->val;
-        list *options = s->options;
-        if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, &net, count);
-            net.types[count] = CONVOLUTIONAL;
-            net.layers[count] = layer;
-        }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, &net, count);
-            net.types[count] = CONNECTED;
-            net.layers[count] = layer;
-        }else if(is_crop(s)){
-            crop_layer *layer = parse_crop(options, &net, count);
-            net.types[count] = CROP;
-            net.layers[count] = layer;
-        }else if(is_cost(s)){
-            cost_layer *layer = parse_cost(options, &net, count);
-            net.types[count] = COST;
-            net.layers[count] = layer;
-        }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, &net, count);
-            net.types[count] = SOFTMAX;
-            net.layers[count] = layer;
-        }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, &net, count);
-            net.types[count] = MAXPOOL;
-            net.layers[count] = layer;
-        }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, &net, count);
-            net.types[count] = NORMALIZATION;
-            net.layers[count] = layer;
-        }else if(is_dropout(s)){
-            dropout_layer *layer = parse_dropout(options, &net, count);
-            net.types[count] = DROPOUT;
-            net.layers[count] = layer;
-        }else if(is_freeweight(s)){
-            freeweight_layer *layer = parse_freeweight(options, &net, count);
-            net.types[count] = FREEWEIGHT;
-            net.layers[count] = layer;
+        params.index = count;
+        fprintf(stderr, "%5d ", count);
+        s = (section *)n->val;
+        options = s->options;
+        layer l = {0};
+        LAYER_TYPE lt = string_to_layer_type(s->type);
+        if(lt == CONVOLUTIONAL){
+            l = parse_convolutional(options, params);
+        }else if(lt == LOCAL){
+            l = parse_local(options, params);
+        }else if(lt == ACTIVE){
+            l = parse_activation(options, params);
+        }else if(lt == RNN){
+            l = parse_rnn(options, params);
+        }else if(lt == GRU){
+            l = parse_gru(options, params);
+        }else if(lt == CRNN){
+            l = parse_crnn(options, params);
+        }else if(lt == CONNECTED){
+            l = parse_connected(options, params);
+        }else if(lt == CROP){
+            l = parse_crop(options, params);
+        }else if(lt == COST){
+            l = parse_cost(options, params);
+        }else if(lt == REGION){
+            l = parse_region(options, params);
+        }else if(lt == DETECTION){
+            l = parse_detection(options, params);
+        }else if(lt == SOFTMAX){
+            l = parse_softmax(options, params);
+            net.hierarchy = l.softmax_tree;
+        }else if(lt == NORMALIZATION){
+            l = parse_normalization(options, params);
+        }else if(lt == BATCHNORM){
+            l = parse_batchnorm(options, params);
+        }else if(lt == MAXPOOL){
+            l = parse_maxpool(options, params);
+        }else if(lt == REORG){
+            l = parse_reorg(options, params);
+        }else if(lt == AVGPOOL){
+            l = parse_avgpool(options, params);
+        }else if(lt == ROUTE){
+            l = parse_route(options, params, net);
+        }else if(lt == SHORTCUT){
+            l = parse_shortcut(options, params, net);
+        }else if(lt == DROPOUT){
+            l = parse_dropout(options, params);
+            l.output = net.layers[count-1].output;
+            l.delta = net.layers[count-1].delta;
+#ifdef GPU
+            l.output_gpu = net.layers[count-1].output_gpu;
+            l.delta_gpu = net.layers[count-1].delta_gpu;
+#endif
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
+        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
+        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
+        l.dontload = option_find_int_quiet(options, "dontload", 0);
+        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
+        option_unused(options);
+        net.layers[count] = l;
+        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
         free_section(s);
-        ++count;
         n = n->next;
+        ++count;
+        if(n){
+            params.h = l.out_h;
+            params.w = l.out_w;
+            params.c = l.out_c;
+            params.inputs = l.outputs;
+        }
     }   
     free_list(sections);
     net.outputs = get_network_output_size(net);
     net.output = get_network_output(net);
+    if(workspace_size){
+        //printf("%ld\n", workspace_size);
+#ifdef GPU
+        if(gpu_index >= 0){
+            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+        }else {
+            net.workspace = calloc(1, workspace_size);
+        }
+#else
+        net.workspace = calloc(1, workspace_size);
+#endif
+    }
     return net;
 }
 
-int is_crop(section *s)
-{
-    return (strcmp(s->type, "[crop]")==0);
-}
-int is_cost(section *s)
-{
-    return (strcmp(s->type, "[cost]")==0);
-}
-int is_convolutional(section *s)
-{
-    return (strcmp(s->type, "[conv]")==0
-            || strcmp(s->type, "[convolutional]")==0);
-}
-int is_connected(section *s)
-{
-    return (strcmp(s->type, "[conn]")==0
-            || strcmp(s->type, "[connected]")==0);
-}
-int is_maxpool(section *s)
-{
-    return (strcmp(s->type, "[max]")==0
-            || strcmp(s->type, "[maxpool]")==0);
-}
-int is_dropout(section *s)
-{
-    return (strcmp(s->type, "[dropout]")==0);
-}
-int is_freeweight(section *s)
-{
-    return (strcmp(s->type, "[freeweight]")==0);
-}
 
-int is_softmax(section *s)
-{
-    return (strcmp(s->type, "[soft]")==0
-            || strcmp(s->type, "[softmax]")==0);
-}
-int is_normalization(section *s)
-{
-    return (strcmp(s->type, "[lrnorm]")==0
-            || strcmp(s->type, "[localresponsenormalization]")==0);
-}
-
-int read_option(char *s, list *options)
-{
-    size_t i;
-    size_t len = strlen(s);
-    char *val = 0;
-    for(i = 0; i < len; ++i){
-        if(s[i] == '='){
-            s[i] = '\0';
-            val = s+i+1;
-            break;
-        }
-    }
-    if(i == len-1) return 0;
-    char *key = s;
-    option_insert(options, key, val);
-    return 1;
-}
 
 list *read_cfg(char *filename)
 {
@@ -429,7 +736,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -439,179 +746,357 @@
     return sections;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
+void save_convolutional_weights_binary(layer l, FILE *fp)
 {
-    #ifdef GPU
-    if(gpu_index >= 0) pull_convolutional_layer(*l);
-    #endif
-    int i;
-    fprintf(fp, "[convolutional]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
     }
-    fprintf(fp, "filters=%d\n"
-            "size=%d\n"
-            "stride=%d\n"
-            "pad=%d\n"
-            "activation=%s\n",
-            l->n, l->size, l->stride, l->pad,
-            get_activation_string(l->activation));
-    fprintf(fp, "biases=");
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    fprintf(fp, "\n");
-    fprintf(fp, "weights=");
-    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
-{
-    fprintf(fp, "[freeweight]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
+#endif
+    binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
     }
-    fprintf(fp, "\n");
-}
-
-void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
-{
-    fprintf(fp, "[dropout]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    for(i = 0; i < l.n; ++i){
+        float mean = l.binary_weights[i*size];
+        if(mean < 0) mean = -mean;
+        fwrite(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                if (l.binary_weights[index + k] > 0) c = (c | 1<<k);
+            }
+            fwrite(&c, sizeof(char), 1, fp);
+        }
     }
-    fprintf(fp, "probability=%g\n\n", l->probability);
 }
 
-void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
+void save_convolutional_weights(layer l, FILE *fp)
 {
-    #ifdef GPU
-    if(gpu_index >= 0) pull_connected_layer(*l);
-    #endif
-    int i;
-    fprintf(fp, "[connected]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\n"
-                "input=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
+    if(l.binary){
+        //save_convolutional_weights_binary(l, fp);
+        //return;
     }
-    fprintf(fp, "output=%d\n"
-            "activation=%s\n",
-            l->outputs,
-            get_activation_string(l->activation));
-    fprintf(fp, "biases=");
-    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    fprintf(fp, "\n");
-    fprintf(fp, "weights=");
-    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
-{
-    fprintf(fp, "[crop]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
     }
-    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
+#endif
+    int num = l.n*l.c*l.size*l.size;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fwrite(l.weights, sizeof(float), num, fp);
+    if(l.adam){
+        fwrite(l.m, sizeof(float), num, fp);
+        fwrite(l.v, sizeof(float), num, fp);
+    }
 }
 
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
+void save_batchnorm_weights(layer l, FILE *fp)
 {
-    fprintf(fp, "[maxpool]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_batchnorm_layer(l);
+    }
+#endif
+    fwrite(l.scales, sizeof(float), l.c, fp);
+    fwrite(l.rolling_mean, sizeof(float), l.c, fp);
+    fwrite(l.rolling_variance, sizeof(float), l.c, fp);
 }
 
-void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
+void save_connected_weights(layer l, FILE *fp)
 {
-    fprintf(fp, "[localresponsenormalization]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\n"
-            "alpha=%g\n"
-            "beta=%g\n"
-            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_connected_layer(l);
+    }
+#endif
+    fwrite(l.biases, sizeof(float), l.outputs, fp);
+    fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
+    }
 }
 
-void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
+void save_weights_upto(network net, char *filename, int cutoff)
 {
-    fprintf(fp, "[softmax]\n");
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
-{
-    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-
-void save_network(network net, char *filename)
-{
-    FILE *fp = fopen(filename, "w");
+#ifdef GPU
+    if(net.gpu_index >= 0){
+        cuda_set_device(net.gpu_index);
+    }
+#endif
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "wb");
     if(!fp) file_error(filename);
+
+    int major = 0;
+    int minor = 1;
+    int revision = 0;
+    fwrite(&major, sizeof(int), 1, fp);
+    fwrite(&minor, sizeof(int), 1, fp);
+    fwrite(&revision, sizeof(int), 1, fp);
+    fwrite(net.seen, sizeof(int), 1, fp);
+
     int i;
-    for(i = 0; i < net.n; ++i)
-    {
-        if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
-        else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
-        else if(net.types[i] == CROP)
-            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
-        else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
-        else if(net.types[i] == FREEWEIGHT)
-            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
-        else if(net.types[i] == DROPOUT)
-            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
-        else if(net.types[i] == NORMALIZATION)
-            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
-        else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
-        else if(net.types[i] == COST)
-            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
+    for(i = 0; i < net.n && i < cutoff; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            save_convolutional_weights(l, fp);
+        } if(l.type == CONNECTED){
+            save_connected_weights(l, fp);
+        } if(l.type == BATCHNORM){
+            save_batchnorm_weights(l, fp);
+        } if(l.type == RNN){
+            save_connected_weights(*(l.input_layer), fp);
+            save_connected_weights(*(l.self_layer), fp);
+            save_connected_weights(*(l.output_layer), fp);
+        } if(l.type == GRU){
+            save_connected_weights(*(l.input_z_layer), fp);
+            save_connected_weights(*(l.input_r_layer), fp);
+            save_connected_weights(*(l.input_h_layer), fp);
+            save_connected_weights(*(l.state_z_layer), fp);
+            save_connected_weights(*(l.state_r_layer), fp);
+            save_connected_weights(*(l.state_h_layer), fp);
+        } if(l.type == CRNN){
+            save_convolutional_weights(*(l.input_layer), fp);
+            save_convolutional_weights(*(l.self_layer), fp);
+            save_convolutional_weights(*(l.output_layer), fp);
+        } if(l.type == LOCAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_local_layer(l);
+            }
+#endif
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fwrite(l.biases, sizeof(float), l.outputs, fp);
+            fwrite(l.weights, sizeof(float), size, fp);
+        }
     }
     fclose(fp);
 }
+void save_weights(network net, char *filename)
+{
+    save_weights_upto(net, filename, net.n);
+}
+
+void transpose_matrix(float *a, int rows, int cols)
+{
+    float *transpose = calloc(rows*cols, sizeof(float));
+    int x, y;
+    for(x = 0; x < rows; ++x){
+        for(y = 0; y < cols; ++y){
+            transpose[y*rows + x] = a[x*cols + y];
+        }
+    }
+    memcpy(a, transpose, rows*cols*sizeof(float));
+    free(transpose);
+}
+
+void load_connected_weights(layer l, FILE *fp, int transpose)
+{
+    fread(l.biases, sizeof(float), l.outputs, fp);
+    fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if(transpose){
+        transpose_matrix(l.weights, l.inputs, l.outputs);
+    }
+    //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
+    //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.outputs, fp);
+        fread(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fread(l.rolling_variance, sizeof(float), l.outputs, fp);
+        //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs));
+        //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs));
+        //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs));
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_connected_layer(l);
+    }
+#endif
+}
+
+void load_batchnorm_weights(layer l, FILE *fp)
+{
+    fread(l.scales, sizeof(float), l.c, fp);
+    fread(l.rolling_mean, sizeof(float), l.c, fp);
+    fread(l.rolling_variance, sizeof(float), l.c, fp);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_batchnorm_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights_binary(layer l, FILE *fp)
+{
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    for(i = 0; i < l.n; ++i){
+        float mean = 0;
+        fread(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            fread(&c, sizeof(char), 1, fp);
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                l.weights[index + k] = (c & 1<<k) ? mean : -mean;
+            }
+        }
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights(layer l, FILE *fp)
+{
+    if(l.binary){
+        //load_convolutional_weights_binary(l, fp);
+        //return;
+    }
+    int num = l.n*l.c*l.size*l.size;
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+        if(0){
+            int i;
+            for(i = 0; i < l.n; ++i){
+                printf("%g, ", l.rolling_mean[i]);
+            }
+            printf("\n");
+            for(i = 0; i < l.n; ++i){
+                printf("%g, ", l.rolling_variance[i]);
+            }
+            printf("\n");
+        }
+        if(0){
+            fill_cpu(l.n, 0, l.rolling_mean, 1);
+            fill_cpu(l.n, 0, l.rolling_variance, 1);
+        }
+    }
+    fread(l.weights, sizeof(float), num, fp);
+    if(l.adam){
+        fread(l.m, sizeof(float), num, fp);
+        fread(l.v, sizeof(float), num, fp);
+    }
+    //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1);
+    if (l.flipped) {
+        transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
+    }
+    //if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+#ifdef GPU
+    if(net->gpu_index >= 0){
+        cuda_set_device(net->gpu_index);
+    }
+#endif
+    fprintf(stderr, "Loading weights from %s...", filename);
+    fflush(stdout);
+    FILE *fp = fopen(filename, "rb");
+    if(!fp) file_error(filename);
+
+    int major;
+    int minor;
+    int revision;
+    fread(&major, sizeof(int), 1, fp);
+    fread(&minor, sizeof(int), 1, fp);
+    fread(&revision, sizeof(int), 1, fp);
+	if ((major * 10 + minor) >= 2) {
+		printf("\n seen 64 \n");
+		uint64_t iseen = 0;
+		fread(&iseen, sizeof(uint64_t), 1, fp);
+		*net->seen = iseen;
+	}
+	else {
+		printf("\n seen 32 \n");
+		fread(net->seen, sizeof(int), 1, fp);
+	}
+    int transpose = (major > 1000) || (minor > 1000);
+
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        layer l = net->layers[i];
+        if (l.dontload) continue;
+        if(l.type == CONVOLUTIONAL){
+            load_convolutional_weights(l, fp);
+        }
+        if(l.type == CONNECTED){
+            load_connected_weights(l, fp, transpose);
+        }
+        if(l.type == BATCHNORM){
+            load_batchnorm_weights(l, fp);
+        }
+        if(l.type == CRNN){
+            load_convolutional_weights(*(l.input_layer), fp);
+            load_convolutional_weights(*(l.self_layer), fp);
+            load_convolutional_weights(*(l.output_layer), fp);
+        }
+        if(l.type == RNN){
+            load_connected_weights(*(l.input_layer), fp, transpose);
+            load_connected_weights(*(l.self_layer), fp, transpose);
+            load_connected_weights(*(l.output_layer), fp, transpose);
+        }
+        if(l.type == GRU){
+            load_connected_weights(*(l.input_z_layer), fp, transpose);
+            load_connected_weights(*(l.input_r_layer), fp, transpose);
+            load_connected_weights(*(l.input_h_layer), fp, transpose);
+            load_connected_weights(*(l.state_z_layer), fp, transpose);
+            load_connected_weights(*(l.state_r_layer), fp, transpose);
+            load_connected_weights(*(l.state_h_layer), fp, transpose);
+        }
+        if(l.type == LOCAL){
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fread(l.biases, sizeof(float), l.outputs, fp);
+            fread(l.weights, sizeof(float), size, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_local_layer(l);
+            }
+#endif
+        }
+    }
+    fprintf(stderr, "Done!\n");
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
 

--
Gitblit v1.10.0