From bfa970560649192cbbd26bc442ffe406e8721e8a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 22:08:56 +0000
Subject: [PATCH] cifar and go stuff

---
 src/parser.c |  243 ++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 193 insertions(+), 50 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 8efafad..923e24c 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,9 +7,12 @@
 #include "crop_layer.h"
 #include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
 #include "normalization_layer.h"
 #include "deconvolutional_layer.h"
 #include "connected_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
 #include "maxpool_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
@@ -29,9 +32,12 @@
 
 int is_network(section *s);
 int is_convolutional(section *s);
+int is_activation(section *s);
 int is_local(section *s);
 int is_deconvolutional(section *s);
 int is_connected(section *s);
+int is_rnn(section *s);
+int is_crnn(section *s);
 int is_maxpool(section *s);
 int is_avgpool(section *s);
 int is_dropout(section *s);
@@ -83,6 +89,7 @@
     int w;
     int c;
     int index;
+    int time_steps;
 } size_params;
 
 deconvolutional_layer parse_deconvolutional(list *options, size_params params)
@@ -149,9 +156,11 @@
     batch=params.batch;
     if(!(h && w && c)) error("Layer before convolutional layer must output image.");
     int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int binary = option_find_int_quiet(options, "binary", 0);
 
-    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
     layer.flipped = option_find_int_quiet(options, "flipped", 0);
+    layer.dot = option_find_float_quiet(options, "dot", 0);
 
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
@@ -163,13 +172,45 @@
     return layer;
 }
 
+layer parse_crnn(list *options, size_params params)
+{
+    int output_filters = option_find_int(options, "output_filters",1);
+    int hidden_filters = option_find_int(options, "hidden_filters",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
+layer parse_rnn(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    int hidden = option_find_int(options, "hidden",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int logistic = option_find_int_quiet(options, "logistic", 0);
+
+    layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
 connected_layer parse_connected(list *options, size_params params)
 {
     int output = option_find_int(options, "output",1);
     char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
 
-    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
+    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
 
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
@@ -183,8 +224,9 @@
 
 softmax_layer parse_softmax(list *options, size_params params)
 {
-    int groups = option_find_int(options, "groups",1);
+    int groups = option_find_int_quiet(options, "groups",1);
     softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
+    layer.temperature = option_find_float_quiet(options, "temperature", 1);
     return layer;
 }
 
@@ -301,10 +343,31 @@
     layer from = net.layers[index];
 
     layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);
+
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+    s.activation = activation;
     return s;
 }
 
 
+layer parse_activation(list *options, size_params params)
+{
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+
+    layer l = make_activation_layer(params.batch, params.inputs, activation);
+
+    l.out_h = params.h;
+    l.out_w = params.w;
+    l.out_c = params.c;
+    l.h = params.h;
+    l.w = params.w;
+    l.c = params.c;
+
+    return l;
+}
+
 route_layer parse_route(list *options, size_params params, network net)
 {
     char *l = option_find(options, "layers");   
@@ -365,13 +428,16 @@
     net->momentum = option_find_float(options, "momentum", .9);
     net->decay = option_find_float(options, "decay", .0001);
     int subdivs = option_find_int(options, "subdivisions",1);
+    net->time_steps = option_find_int_quiet(options, "time_steps",1);
     net->batch /= subdivs;
+    net->batch *= net->time_steps;
     net->subdivisions = subdivs;
 
     net->h = option_find_int_quiet(options, "height",0);
     net->w = option_find_int_quiet(options, "width",0);
     net->c = option_find_int_quiet(options, "channels",0);
     net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
 
     if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
 
@@ -433,6 +499,7 @@
     params.c = net.c;
     params.inputs = net.inputs;
     params.batch = net.batch;
+    params.time_steps = net.time_steps;
 
     n = n->next;
     int count = 0;
@@ -447,8 +514,14 @@
             l = parse_convolutional(options, params);
         }else if(is_local(s)){
             l = parse_local(options, params);
+        }else if(is_activation(s)){
+            l = parse_activation(options, params);
         }else if(is_deconvolutional(s)){
             l = parse_deconvolutional(options, params);
+        }else if(is_rnn(s)){
+            l = parse_rnn(options, params);
+        }else if(is_crnn(s)){
+            l = parse_crnn(options, params);
         }else if(is_connected(s)){
             l = parse_connected(options, params);
         }else if(is_crop(s)){
@@ -530,11 +603,23 @@
     return (strcmp(s->type, "[conv]")==0
             || strcmp(s->type, "[convolutional]")==0);
 }
+int is_activation(section *s)
+{
+    return (strcmp(s->type, "[activation]")==0);
+}
 int is_network(section *s)
 {
     return (strcmp(s->type, "[net]")==0
             || strcmp(s->type, "[network]")==0);
 }
+int is_crnn(section *s)
+{
+    return (strcmp(s->type, "[crnn]")==0);
+}
+int is_rnn(section *s)
+{
+    return (strcmp(s->type, "[rnn]")==0);
+}
 int is_connected(section *s)
 {
     return (strcmp(s->type, "[conn]")==0
@@ -645,6 +730,39 @@
     fclose(fp);
 }
 
+void save_convolutional_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
+    }
+#endif
+    int num = l.n*l.c*l.size*l.size;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fwrite(l.filters, sizeof(float), num, fp);
+}
+
+void save_connected_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_connected_layer(l);
+    }
+#endif
+    fwrite(l.biases, sizeof(float), l.outputs, fp);
+    fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
+    }
+}
+
 void save_weights_upto(network net, char *filename, int cutoff)
 {
     fprintf(stderr, "Saving weights to %s\n", filename);
@@ -663,27 +781,17 @@
     for(i = 0; i < net.n && i < cutoff; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-#ifdef GPU
-            if(gpu_index >= 0){
-                pull_convolutional_layer(l);
-            }
-#endif
-            int num = l.n*l.c*l.size*l.size;
-            fwrite(l.biases, sizeof(float), l.n, fp);
-            if (l.batch_normalize){
-                fwrite(l.scales, sizeof(float), l.n, fp);
-                fwrite(l.rolling_mean, sizeof(float), l.n, fp);
-                fwrite(l.rolling_variance, sizeof(float), l.n, fp);
-            }
-            fwrite(l.filters, sizeof(float), num, fp);
+            save_convolutional_weights(l, fp);
         } if(l.type == CONNECTED){
-#ifdef GPU
-            if(gpu_index >= 0){
-                pull_connected_layer(l);
-            }
-#endif
-            fwrite(l.biases, sizeof(float), l.outputs, fp);
-            fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+            save_connected_weights(l, fp);
+        } if(l.type == RNN){
+            save_connected_weights(*(l.input_layer), fp);
+            save_connected_weights(*(l.self_layer), fp);
+            save_connected_weights(*(l.output_layer), fp);
+        } if(l.type == CRNN){
+            save_convolutional_weights(*(l.input_layer), fp);
+            save_convolutional_weights(*(l.self_layer), fp);
+            save_convolutional_weights(*(l.output_layer), fp);
         } if(l.type == LOCAL){
 #ifdef GPU
             if(gpu_index >= 0){
@@ -716,11 +824,59 @@
     free(transpose);
 }
 
+void load_connected_weights(layer l, FILE *fp, int transpose)
+{
+    fread(l.biases, sizeof(float), l.outputs, fp);
+    fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if(transpose){
+        transpose_matrix(l.weights, l.inputs, l.outputs);
+    }
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.outputs, fp);
+        fread(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fread(l.rolling_variance, sizeof(float), l.outputs, fp);
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_connected_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights(layer l, FILE *fp)
+{
+    int num = l.n*l.c*l.size*l.size;
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+        /*
+        int i;
+        for(i = 0; i < l.n; ++i){
+            if(l.rolling_mean[i] > 1 || l.rolling_mean[i] < -1 || l.rolling_variance[i] > 1 || l.rolling_variance[i] < -1)
+            printf("%f %f\n", l.rolling_mean[i], l.rolling_variance[i]);
+        }
+        */
+    }
+    fflush(stdout);
+    fread(l.filters, sizeof(float), num, fp);
+    if (l.flipped) {
+        transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+
 void load_weights_upto(network *net, char *filename, int cutoff)
 {
     fprintf(stderr, "Loading weights from %s...", filename);
     fflush(stdout);
-    FILE *fp = fopen(filename, "r");
+    FILE *fp = fopen(filename, "rb");
     if(!fp) file_error(filename);
 
     int major;
@@ -730,28 +886,14 @@
     fread(&minor, sizeof(int), 1, fp);
     fread(&revision, sizeof(int), 1, fp);
     fread(net->seen, sizeof(int), 1, fp);
+    int transpose = (major > 1000) || (minor > 1000);
 
     int i;
     for(i = 0; i < net->n && i < cutoff; ++i){
         layer l = net->layers[i];
         if (l.dontload) continue;
         if(l.type == CONVOLUTIONAL){
-            int num = l.n*l.c*l.size*l.size;
-            fread(l.biases, sizeof(float), l.n, fp);
-            if (l.batch_normalize && (!l.dontloadscales)){
-                fread(l.scales, sizeof(float), l.n, fp);
-                fread(l.rolling_mean, sizeof(float), l.n, fp);
-                fread(l.rolling_variance, sizeof(float), l.n, fp);
-            }
-            fread(l.filters, sizeof(float), num, fp);
-            if (l.flipped) {
-                transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
-            }
-#ifdef GPU
-            if(gpu_index >= 0){
-                push_convolutional_layer(l);
-            }
-#endif
+            load_convolutional_weights(l, fp);
         }
         if(l.type == DECONVOLUTIONAL){
             int num = l.n*l.c*l.size*l.size;
@@ -764,16 +906,17 @@
 #endif
         }
         if(l.type == CONNECTED){
-            fread(l.biases, sizeof(float), l.outputs, fp);
-            fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
-            if(major > 1000 || minor > 1000){
-                transpose_matrix(l.weights, l.inputs, l.outputs);
-            }
-#ifdef GPU
-            if(gpu_index >= 0){
-                push_connected_layer(l);
-            }
-#endif
+            load_connected_weights(l, fp, transpose);
+        }
+        if(l.type == CRNN){
+            load_convolutional_weights(*(l.input_layer), fp);
+            load_convolutional_weights(*(l.self_layer), fp);
+            load_convolutional_weights(*(l.output_layer), fp);
+        }
+        if(l.type == RNN){
+            load_connected_weights(*(l.input_layer), fp, transpose);
+            load_connected_weights(*(l.self_layer), fp, transpose);
+            load_connected_weights(*(l.output_layer), fp, transpose);
         }
         if(l.type == LOCAL){
             int locations = l.out_w*l.out_h;

--
Gitblit v1.10.0