From c53e03348c65462bcba33f6352087dd6b9268e8f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 16 Sep 2015 21:12:10 +0000
Subject: [PATCH] yolo working w/ regions

---
 src/network.c |   83 ++++++++++++++++++++++++++++++++++++-----
 1 files changed, 72 insertions(+), 11 deletions(-)

diff --git a/src/network.c b/src/network.c
index fba4494..80ee291 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,12 +4,14 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "blas.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
+#include "region_layer.h"
 #include "normalization_layer.h"
 #include "maxpool_layer.h"
 #include "avgpool_layer.h"
@@ -18,6 +20,41 @@
 #include "dropout_layer.h"
 #include "route_layer.h"
 
+int get_current_batch(network net)
+{
+    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+    return batch_num;
+}
+
+float get_current_rate(network net)
+{
+    int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+    switch (net.policy) {
+        case CONSTANT:
+            return net.learning_rate;
+        case STEP:
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+            }
+            return rate;
+        case EXP:
+            return net.learning_rate * pow(net.gamma, batch_num);
+        case POLY:
+            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+        default:
+            fprintf(stderr, "Policy is weird!\n");
+            return net.learning_rate;
+    }
+}
+
 char *get_layer_string(LAYER_TYPE a)
 {
     switch(a){
@@ -35,6 +72,8 @@
             return "softmax";
         case DETECTION:
             return "detection";
+        case REGION:
+            return "region";
         case DROPOUT:
             return "dropout";
         case CROP:
@@ -56,6 +95,7 @@
     network net = {0};
     net.n = n;
     net.layers = calloc(net.n, sizeof(layer));
+    net.seen = calloc(1, sizeof(int));
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
@@ -79,6 +119,8 @@
             forward_normalization_layer(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer(l, state);
+        } else if(l.type == REGION){
+            forward_region_layer(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer(l, state);
         } else if(l.type == CROP){
@@ -104,14 +146,15 @@
 {
     int i;
     int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
+            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
-            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
@@ -129,12 +172,16 @@
     float sum = 0;
     int count = 0;
     for(i = 0; i < net.n; ++i){
-        if(net.layers[net.n-1].type == COST){
-            sum += net.layers[net.n-1].output[0];
+        if(net.layers[i].type == COST){
+            sum += net.layers[i].output[0];
             ++count;
         }
-        if(net.layers[net.n-1].type == DETECTION){
-            sum += net.layers[net.n-1].cost[0];
+        if(net.layers[i].type == DETECTION){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+        if(net.layers[i].type == REGION){
+            sum += net.layers[i].cost[0];
             ++count;
         }
     }
@@ -177,6 +224,8 @@
             backward_dropout_layer(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer(l, state);
+        } else if(l.type == REGION){
+            backward_region_layer(l, state);
         } else if(l.type == SOFTMAX){
             if(i != 0) backward_softmax_layer(l, state);
         } else if(l.type == CONNECTED){
@@ -191,6 +240,7 @@
 
 float train_network_datum(network net, float *x, float *y)
 {
+    *net.seen += net.batch;
 #ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
 #endif
@@ -202,7 +252,7 @@
     forward_network(net, state);
     backward_network(net, state);
     float error = get_network_cost(net);
-    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
+    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
     return error;
 }
 
@@ -215,7 +265,6 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        net.seen += batch;
         get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
@@ -236,7 +285,6 @@
     float sum = 0;
     for(i = 0; i < n; ++i){
         get_next_batch(d, batch, i*batch, X, y);
-        net.seen += batch;
         float err = train_network_datum(net, X, y);
         sum += err;
     }
@@ -507,4 +555,17 @@
     return acc;
 }
 
-
+void free_network(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+    #ifdef GPU
+    if(*net.input_gpu) cuda_free(*net.input_gpu);
+    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if(net.input_gpu) free(net.input_gpu);
+    if(net.truth_gpu) free(net.truth_gpu);
+    #endif
+}

--
Gitblit v1.10.0