From c62b4f35aa2c59d7db0fd177affeed14b1ba4bcb Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 08 Sep 2016 07:04:39 +0000
Subject: [PATCH] adding coco models
---
src/data.c | 795 ++++++++++++++++++++++++++++++++++++++++++++++----------
1 files changed, 645 insertions(+), 150 deletions(-)
diff --git a/src/data.c b/src/data.c
index f1f5b80..02dbac4 100644
--- a/src/data.c
+++ b/src/data.c
@@ -1,28 +1,14 @@
#include "data.h"
#include "utils.h"
#include "image.h"
+#include "cuda.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
unsigned int data_seed;
-
-struct load_args{
- char **paths;
- int n;
- int m;
- char **labels;
- int k;
- int h;
- int w;
- int nh;
- int nw;
- int num_boxes;
- int classes;
- int background;
- data *d;
-};
+pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
list *get_paths(char *filename)
{
@@ -37,18 +23,67 @@
return lines;
}
+char **get_random_paths_indexes(char **paths, int n, int m, int *indexes)
+{
+ char **random_paths = calloc(n, sizeof(char*));
+ int i;
+ pthread_mutex_lock(&mutex);
+ for(i = 0; i < n; ++i){
+ int index = rand_r(&data_seed)%m;
+ indexes[i] = index;
+ random_paths[i] = paths[index];
+ if(i == 0) printf("%s\n", paths[index]);
+ }
+ pthread_mutex_unlock(&mutex);
+ return random_paths;
+}
+
char **get_random_paths(char **paths, int n, int m)
{
char **random_paths = calloc(n, sizeof(char*));
int i;
+ pthread_mutex_lock(&mutex);
for(i = 0; i < n; ++i){
int index = rand_r(&data_seed)%m;
random_paths[i] = paths[index];
if(i == 0) printf("%s\n", paths[index]);
}
+ pthread_mutex_unlock(&mutex);
return random_paths;
}
+char **find_replace_paths(char **paths, int n, char *find, char *replace)
+{
+ char **replace_paths = calloc(n, sizeof(char*));
+ int i;
+ for(i = 0; i < n; ++i){
+ char *replaced = find_replace(paths[i], find, replace);
+ replace_paths[i] = copy_string(replaced);
+ }
+ return replace_paths;
+}
+
+matrix load_image_paths_gray(char **paths, int n, int w, int h)
+{
+ int i;
+ matrix X;
+ X.rows = n;
+ X.vals = calloc(X.rows, sizeof(float*));
+ X.cols = 0;
+
+ for(i = 0; i < n; ++i){
+ image im = load_image(paths[i], w, h, 3);
+
+ image gray = grayscale_image(im);
+ free_image(im);
+ im = gray;
+
+ X.vals[i] = im.data;
+ X.cols = im.h*im.w*im.c;
+ }
+ return X;
+}
+
matrix load_image_paths(char **paths, int n, int w, int h)
{
int i;
@@ -65,11 +100,33 @@
return X;
}
-typedef struct{
- int id;
- float x,y,w,h;
- float left, right, top, bottom;
-} box_label;
+matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
+{
+ int i;
+ matrix X;
+ X.rows = n;
+ X.vals = calloc(X.rows, sizeof(float*));
+ X.cols = 0;
+
+ for(i = 0; i < n; ++i){
+ image im = load_image_color(paths[i], 0, 0);
+ image crop = random_augment_image(im, angle, aspect, min, max, size);
+ int flip = rand_r(&data_seed)%2;
+ if (flip) flip_image(crop);
+ random_distort_image(crop, hue, saturation, exposure);
+
+ /*
+ show_image(im, "orig");
+ show_image(crop, "crop");
+ cvWaitKey(0);
+ */
+ free_image(im);
+ X.vals[i] = crop.data;
+ X.cols = crop.h*crop.w*crop.c;
+ }
+ return X;
+}
+
box_label *read_boxes(char *filename, int *n)
{
@@ -108,76 +165,152 @@
}
}
-void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
+void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip)
{
- char *labelpath = find_replace(path, "detection_images", "labels");
+ int i;
+ for(i = 0; i < n; ++i){
+ boxes[i].left = boxes[i].left * sx - dx;
+ boxes[i].right = boxes[i].right * sx - dx;
+ boxes[i].top = boxes[i].top * sy - dy;
+ boxes[i].bottom = boxes[i].bottom* sy - dy;
+
+ if(flip){
+ float swap = boxes[i].left;
+ boxes[i].left = 1. - boxes[i].right;
+ boxes[i].right = 1. - swap;
+ }
+
+ boxes[i].left = constrain(0, 1, boxes[i].left);
+ boxes[i].right = constrain(0, 1, boxes[i].right);
+ boxes[i].top = constrain(0, 1, boxes[i].top);
+ boxes[i].bottom = constrain(0, 1, boxes[i].bottom);
+
+ boxes[i].x = (boxes[i].left+boxes[i].right)/2;
+ boxes[i].y = (boxes[i].top+boxes[i].bottom)/2;
+ boxes[i].w = (boxes[i].right - boxes[i].left);
+ boxes[i].h = (boxes[i].bottom - boxes[i].top);
+
+ boxes[i].w = constrain(0, 1, boxes[i].w);
+ boxes[i].h = constrain(0, 1, boxes[i].h);
+ }
+}
+
+void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
+{
+ char *labelpath = find_replace(path, "images", "labels");
+ labelpath = find_replace(labelpath, "JPEGImages", "labels");
+
labelpath = find_replace(labelpath, ".jpg", ".txt");
+ labelpath = find_replace(labelpath, ".JPG", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count);
+ correct_boxes(boxes, count, dx, dy, sx, sy, flip);
float x,y,w,h;
- float left, top, right, bot;
int id;
int i;
- if(background){
- for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){
- truth[i] = 1;
- }
- }
- for(i = 0; i < count; ++i){
- left = boxes[i].left * sx - dx;
- right = boxes[i].right * sx - dx;
- top = boxes[i].top * sy - dy;
- bot = boxes[i].bottom* sy - dy;
+
+ for (i = 0; i < count && i < 30; ++i) {
+ x = boxes[i].x;
+ y = boxes[i].y;
+ w = boxes[i].w;
+ h = boxes[i].h;
id = boxes[i].id;
- if(flip){
- float swap = left;
- left = 1. - right;
- right = 1. - swap;
- }
+ if (w < .0 || h < .0) continue;
- left = constrain(0, 1, left);
- right = constrain(0, 1, right);
- top = constrain(0, 1, top);
- bot = constrain(0, 1, bot);
+ int index = (4+classes) * i;
- x = (left+right)/2;
- y = (top+bot)/2;
- w = (right - left);
- h = (bot - top);
-
- if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue;
-
- int i = (int)(x*num_boxes);
- int j = (int)(y*num_boxes);
-
- x = x*num_boxes - i;
- y = y*num_boxes - j;
-
- /*
- float maxwidth = distance_from_edge(i, num_boxes);
- float maxheight = distance_from_edge(j, num_boxes);
- w = w/maxwidth;
- h = h/maxheight;
- */
-
- w = constrain(0, 1, w);
- h = constrain(0, 1, h);
- if (w == 0 || h == 0) continue;
- w = sqrt(w);
- h = sqrt(h);
-
- int index = (i+j*num_boxes)*(4+classes+background);
- if(truth[index+classes+background+2]) continue;
- if(background) truth[index++] = 0;
- truth[index+id] = 1;
- index += classes;
truth[index++] = x;
truth[index++] = y;
truth[index++] = w;
truth[index++] = h;
+
+ if (id < classes) truth[index+id] = 1;
+ }
+ free(boxes);
+}
+
+void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy)
+{
+ char *labelpath = find_replace(path, "images", "labels");
+ labelpath = find_replace(labelpath, "JPEGImages", "labels");
+
+ labelpath = find_replace(labelpath, ".jpg", ".txt");
+ labelpath = find_replace(labelpath, ".png", ".txt");
+ labelpath = find_replace(labelpath, ".JPG", ".txt");
+ labelpath = find_replace(labelpath, ".JPEG", ".txt");
+ int count = 0;
+ box_label *boxes = read_boxes(labelpath, &count);
+ randomize_boxes(boxes, count);
+ correct_boxes(boxes, count, dx, dy, sx, sy, flip);
+ float x,y,w,h;
+ int id;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ x = boxes[i].x;
+ y = boxes[i].y;
+ w = boxes[i].w;
+ h = boxes[i].h;
+ id = boxes[i].id;
+
+ if (w < .01 || h < .01) continue;
+
+ int col = (int)(x*num_boxes);
+ int row = (int)(y*num_boxes);
+
+ x = x*num_boxes - col;
+ y = y*num_boxes - row;
+
+ int index = (col+row*num_boxes)*(5+classes);
+ if (truth[index]) continue;
+ truth[index++] = 1;
+
+ if (id < classes) truth[index+id] = 1;
+ index += classes;
+
+ truth[index++] = x;
+ truth[index++] = y;
+ truth[index++] = w;
+ truth[index++] = h;
+ }
+ free(boxes);
+}
+
+void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
+{
+ char *labelpath = find_replace(path, "images", "labels");
+ labelpath = find_replace(labelpath, "JPEGImages", "labels");
+
+ labelpath = find_replace(labelpath, ".jpg", ".txt");
+ labelpath = find_replace(labelpath, ".png", ".txt");
+ labelpath = find_replace(labelpath, ".JPG", ".txt");
+ labelpath = find_replace(labelpath, ".JPEG", ".txt");
+ int count = 0;
+ box_label *boxes = read_boxes(labelpath, &count);
+ randomize_boxes(boxes, count);
+ correct_boxes(boxes, count, dx, dy, sx, sy, flip);
+ if(count > num_boxes) count = num_boxes;
+ float x,y,w,h;
+ int id;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ x = boxes[i].x;
+ y = boxes[i].y;
+ w = boxes[i].w;
+ h = boxes[i].h;
+ id = boxes[i].id;
+
+ if (w < .01 || h < .01) continue;
+
+ truth[i*5+0] = x;
+ truth[i*5+1] = y;
+ truth[i*5+2] = w;
+ truth[i*5+3] = h;
+ truth[i*5+4] = id;
}
free(boxes);
}
@@ -212,7 +345,7 @@
data load_data_captcha(char **paths, int n, int m, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
- data d;
+ data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = make_matrix(n, k*NUMCHARS);
@@ -227,7 +360,7 @@
data load_data_captcha_encode(char **paths, int n, int m, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
- data d;
+ data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.X.cols = 17100;
@@ -247,7 +380,7 @@
++count;
}
}
- if(count != 1) printf("%d, %s\n", count, path);
+ if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path);
}
matrix load_labels_paths(char **paths, int n, char **labels, int k)
@@ -260,6 +393,33 @@
return y;
}
+matrix load_tags_paths(char **paths, int n, int k)
+{
+ matrix y = make_matrix(n, k);
+ int i;
+ int count = 0;
+ for(i = 0; i < n; ++i){
+ char *label = find_replace(paths[i], "imgs", "labels");
+ label = find_replace(label, "_iconl.jpeg", ".txt");
+ FILE *file = fopen(label, "r");
+ if(!file){
+ label = find_replace(label, "labels", "labels2");
+ file = fopen(label, "r");
+ if(!file) continue;
+ }
+ ++count;
+ int tag;
+ while(fscanf(file, "%d", &tag) == 1){
+ if(tag < k){
+ y.vals[i][tag] = 1;
+ }
+ }
+ fclose(file);
+ }
+ printf("%d/%d\n", count, n);
+ return y;
+}
+
char **get_labels(char *filename)
{
list *plist = get_paths(filename);
@@ -270,6 +430,9 @@
void free_data(data d)
{
+ if(d.indexes){
+ free(d.indexes);
+ }
if(!d.shallow){
free_matrix(d.X);
free_matrix(d.y);
@@ -279,102 +442,299 @@
}
}
-data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background)
+data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure)
{
char **random_paths = get_random_paths(paths, n, m);
int i;
- data d;
+ data d = {0};
d.shallow = 0;
d.X.rows = n;
d.X.vals = calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
- int k = num_boxes*num_boxes*(4+classes+background);
+
+ int k = size*size*(5+classes);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image orig = load_image_color(random_paths[i], 0, 0);
- float exposure = rand_uniform()+1;
- if(rand_uniform() > .5) exposure = 1/exposure;
-
- float saturation = rand_uniform()+1;
- if(rand_uniform() > .5) saturation = 1/saturation;
int oh = orig.h;
int ow = orig.w;
- int dw = ow/10;
- int dh = oh/10;
+ int dw = (ow*jitter);
+ int dh = (oh*jitter);
- int pleft = (rand_uniform() * 2*dw - dw);
- int pright = (rand_uniform() * 2*dw - dw);
- int ptop = (rand_uniform() * 2*dh - dh);
- int pbot = (rand_uniform() * 2*dh - dh);
+ int pleft = rand_uniform(-dw, dw);
+ int pright = rand_uniform(-dw, dw);
+ int ptop = rand_uniform(-dh, dh);
+ int pbot = rand_uniform(-dh, dh);
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
-
- /*
- float angle = rand_uniform()*.1 - .05;
- image rot = rotate_image(orig, angle);
- free_image(orig);
- orig = rot;
- */
int flip = rand_r(&data_seed)%2;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
+
float dx = ((float)pleft/ow)/sx;
float dy = ((float)ptop /oh)/sy;
- free_image(orig);
image sized = resize_image(cropped, w, h);
- free_image(cropped);
if(flip) flip_image(sized);
+ random_distort_image(sized, hue, saturation, exposure);
d.X.vals[i] = sized.data;
- fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, 1./sx, 1./sy);
+ fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy);
+
+ free_image(orig);
+ free_image(cropped);
}
free(random_paths);
return d;
}
-void *load_detection_thread(void *ptr)
+data load_data_compare(int n, char **paths, int m, int classes, int w, int h)
{
- printf("Loading data: %d\n", rand_r(&data_seed));
- struct load_args a = *(struct load_args*)ptr;
- *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background);
+ if(m) paths = get_random_paths(paths, 2*n, m);
+ int i,j;
+ data d = {0};
+ d.shallow = 0;
+
+ d.X.rows = n;
+ d.X.vals = calloc(d.X.rows, sizeof(float*));
+ d.X.cols = h*w*6;
+
+ int k = 2*(classes);
+ d.y = make_matrix(n, k);
+ for(i = 0; i < n; ++i){
+ image im1 = load_image_color(paths[i*2], w, h);
+ image im2 = load_image_color(paths[i*2+1], w, h);
+
+ d.X.vals[i] = calloc(d.X.cols, sizeof(float));
+ memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float));
+ memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float));
+
+ int id;
+ float iou;
+
+ char *imlabel1 = find_replace(paths[i*2], "imgs", "labels");
+ imlabel1 = find_replace(imlabel1, "jpg", "txt");
+ FILE *fp1 = fopen(imlabel1, "r");
+
+ while(fscanf(fp1, "%d %f", &id, &iou) == 2){
+ if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou;
+ }
+
+ char *imlabel2 = find_replace(paths[i*2+1], "imgs", "labels");
+ imlabel2 = find_replace(imlabel2, "jpg", "txt");
+ FILE *fp2 = fopen(imlabel2, "r");
+
+ while(fscanf(fp2, "%d %f", &id, &iou) == 2){
+ if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou;
+ }
+
+ for (j = 0; j < classes; ++j){
+ if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){
+ d.y.vals[i][2*j] = 1;
+ d.y.vals[i][2*j+1] = 0;
+ } else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){
+ d.y.vals[i][2*j] = 0;
+ d.y.vals[i][2*j+1] = 1;
+ } else {
+ d.y.vals[i][2*j] = SECRET_NUM;
+ d.y.vals[i][2*j+1] = SECRET_NUM;
+ }
+ }
+ fclose(fp1);
+ fclose(fp2);
+
+ free_image(im1);
+ free_image(im2);
+ }
+ if(m) free(paths);
+ return d;
+}
+
+data load_data_swag(char **paths, int n, int classes, float jitter)
+{
+ int index = rand_r(&data_seed)%n;
+ char *random_path = paths[index];
+
+ image orig = load_image_color(random_path, 0, 0);
+ int h = orig.h;
+ int w = orig.w;
+
+ data d = {0};
+ d.shallow = 0;
+ d.w = w;
+ d.h = h;
+
+ d.X.rows = 1;
+ d.X.vals = calloc(d.X.rows, sizeof(float*));
+ d.X.cols = h*w*3;
+
+ int k = (4+classes)*30;
+ d.y = make_matrix(1, k);
+
+ int dw = w*jitter;
+ int dh = h*jitter;
+
+ int pleft = rand_uniform(-dw, dw);
+ int pright = rand_uniform(-dw, dw);
+ int ptop = rand_uniform(-dh, dh);
+ int pbot = rand_uniform(-dh, dh);
+
+ int swidth = w - pleft - pright;
+ int sheight = h - ptop - pbot;
+
+ float sx = (float)swidth / w;
+ float sy = (float)sheight / h;
+
+ int flip = rand_r(&data_seed)%2;
+ image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
+
+ float dx = ((float)pleft/w)/sx;
+ float dy = ((float)ptop /h)/sy;
+
+ image sized = resize_image(cropped, w, h);
+ if(flip) flip_image(sized);
+ d.X.vals[0] = sized.data;
+
+ fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy);
+
+ free_image(orig);
+ free_image(cropped);
+
+ return d;
+}
+
+data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure)
+{
+ char **random_paths = get_random_paths(paths, n, m);
+ int i;
+ data d = {0};
+ d.shallow = 0;
+
+ d.X.rows = n;
+ d.X.vals = calloc(d.X.rows, sizeof(float*));
+ d.X.cols = h*w*3;
+
+ d.y = make_matrix(n, 5*boxes);
+ for(i = 0; i < n; ++i){
+ image orig = load_image_color(random_paths[i], 0, 0);
+
+ int oh = orig.h;
+ int ow = orig.w;
+
+ int dw = (ow*jitter);
+ int dh = (oh*jitter);
+
+ int pleft = rand_uniform(-dw, dw);
+ int pright = rand_uniform(-dw, dw);
+ int ptop = rand_uniform(-dh, dh);
+ int pbot = rand_uniform(-dh, dh);
+
+ int swidth = ow - pleft - pright;
+ int sheight = oh - ptop - pbot;
+
+ float sx = (float)swidth / ow;
+ float sy = (float)sheight / oh;
+
+ int flip = rand_r(&data_seed)%2;
+ image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
+
+ float dx = ((float)pleft/ow)/sx;
+ float dy = ((float)ptop /oh)/sy;
+
+ image sized = resize_image(cropped, w, h);
+ if(flip) flip_image(sized);
+ random_distort_image(sized, hue, saturation, exposure);
+ d.X.vals[i] = sized.data;
+
+ fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
+
+ free_image(orig);
+ free_image(cropped);
+ }
+ free(random_paths);
+ return d;
+}
+
+
+void *load_thread(void *ptr)
+{
+
+#ifdef GPU
+ cudaError_t status = cudaSetDevice(gpu_index);
+ check_error(status);
+#endif
+
+ //printf("Loading data: %d\n", rand_r(&data_seed));
+ load_args a = *(struct load_args*)ptr;
+ if(a.exposure == 0) a.exposure = 1;
+ if(a.saturation == 0) a.saturation = 1;
+ if(a.aspect == 0) a.aspect = 1;
+
+ if (a.type == OLD_CLASSIFICATION_DATA){
+ *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
+ } else if (a.type == CLASSIFICATION_DATA){
+ *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
+ } else if (a.type == SUPER_DATA){
+ *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
+ } else if (a.type == STUDY_DATA){
+ *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
+ } else if (a.type == WRITING_DATA){
+ *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
+ } else if (a.type == REGION_DATA){
+ *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
+ } else if (a.type == DETECTION_DATA){
+ *a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
+ } else if (a.type == SWAG_DATA){
+ *a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
+ } else if (a.type == COMPARE_DATA){
+ *a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h);
+ } else if (a.type == IMAGE_DATA){
+ *(a.im) = load_image_color(a.path, 0, 0);
+ *(a.resized) = resize_image(*(a.im), a.w, a.h);
+ } else if (a.type == TAG_DATA){
+ *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
+ //*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
+ }
free(ptr);
return 0;
}
-pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d)
+pthread_t load_data_in_thread(load_args args)
{
pthread_t thread;
- struct load_args *args = calloc(1, sizeof(struct load_args));
- args->n = n;
- args->paths = paths;
- args->m = m;
- args->h = h;
- args->w = w;
- args->nh = nh;
- args->nw = nw;
- args->num_boxes = nw;
- args->classes = classes;
- args->background = background;
- args->d = d;
- if(pthread_create(&thread, 0, load_detection_thread, args)) {
- error("Thread creation failed");
- }
+ struct load_args *ptr = calloc(1, sizeof(struct load_args));
+ *ptr = args;
+ if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
return thread;
}
+data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h)
+{
+ if(m) paths = get_random_paths(paths, n, m);
+ char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png");
+ data d = {0};
+ d.shallow = 0;
+ d.X = load_image_paths(paths, n, w, h);
+ d.y = load_image_paths_gray(replace_paths, n, out_w, out_h);
+ if(m) free(paths);
+ int i;
+ for(i = 0; i < n; ++i) free(replace_paths[i]);
+ free(replace_paths);
+ return d;
+}
+
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
- data d;
+ data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = load_labels_paths(paths, n, labels, k);
@@ -382,30 +742,70 @@
return d;
}
-void *load_in_thread(void *ptr)
+data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
- struct load_args a = *(struct load_args*)ptr;
- *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.w, a.h);
- free(ptr);
- return 0;
+ data d = {0};
+ d.indexes = calloc(n, sizeof(int));
+ if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes);
+ d.shallow = 0;
+ d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
+ d.y = load_labels_paths(paths, n, labels, k);
+ if(m) free(paths);
+ return d;
}
-pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d)
+data load_data_super(char **paths, int n, int m, int w, int h, int scale)
{
- pthread_t thread;
- struct load_args *args = calloc(1, sizeof(struct load_args));
- args->n = n;
- args->paths = paths;
- args->m = m;
- args->labels = labels;
- args->k = k;
- args->h = h;
- args->w = w;
- args->d = d;
- if(pthread_create(&thread, 0, load_in_thread, args)) {
- error("Thread creation failed");
+ if(m) paths = get_random_paths(paths, n, m);
+ data d = {0};
+ d.shallow = 0;
+
+ int i;
+ d.X.rows = n;
+ d.X.vals = calloc(n, sizeof(float*));
+ d.X.cols = w*h*3;
+
+ d.y.rows = n;
+ d.y.vals = calloc(n, sizeof(float*));
+ d.y.cols = w*scale * h*scale * 3;
+
+ for(i = 0; i < n; ++i){
+ image im = load_image_color(paths[i], 0, 0);
+ image crop = random_crop_image(im, w*scale, h*scale);
+ int flip = rand_r(&data_seed)%2;
+ if (flip) flip_image(crop);
+ image resize = resize_image(crop, w, h);
+ d.X.vals[i] = resize.data;
+ d.y.vals[i] = crop.data;
+ free_image(im);
}
- return thread;
+
+ if(m) free(paths);
+ return d;
+}
+
+data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
+{
+ if(m) paths = get_random_paths(paths, n, m);
+ data d = {0};
+ d.shallow = 0;
+ d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
+ d.y = load_labels_paths(paths, n, labels, k);
+ if(m) free(paths);
+ return d;
+}
+
+data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
+{
+ if(m) paths = get_random_paths(paths, n, m);
+ data d = {0};
+ d.w = size;
+ d.h = size;
+ d.shallow = 0;
+ d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
+ d.y = load_tags_paths(paths, n, k);
+ if(m) free(paths);
+ return d;
}
matrix concat_matrix(matrix m1, matrix m2)
@@ -426,16 +826,29 @@
data concat_data(data d1, data d2)
{
- data d;
+ data d = {0};
d.shallow = 1;
d.X = concat_matrix(d1.X, d2.X);
d.y = concat_matrix(d1.y, d2.y);
return d;
}
+data concat_datas(data *d, int n)
+{
+ int i;
+ data out = {0};
+ out.shallow = 1;
+ for(i = 0; i < n; ++i){
+ data new = concat_data(d[i], out);
+ free_data(out);
+ out = new;
+ }
+ return out;
+}
+
data load_categorical_data_csv(char *filename, int target, int k)
{
- data d;
+ data d = {0};
d.shallow = 0;
matrix X = csv_to_matrix(filename);
float *truth_1d = pop_column(&X, target);
@@ -452,7 +865,7 @@
data load_cifar10_data(char *filename)
{
- data d;
+ data d = {0};
d.shallow = 0;
long i,j;
matrix X = make_matrix(10000, 3072);
@@ -471,8 +884,8 @@
X.vals[i][j] = (double)bytes[j+1];
}
}
- translate_data_rows(d, -128);
- scale_data_rows(d, 1./128);
+ //translate_data_rows(d, -128);
+ scale_data_rows(d, 1./255);
//normalize_data_rows(d);
fclose(fp);
return d;
@@ -498,10 +911,21 @@
}
}
+void smooth_data(data d)
+{
+ int i, j;
+ float scale = 1. / d.y.cols;
+ float eps = .1;
+ for(i = 0; i < d.y.rows; ++i){
+ for(j = 0; j < d.y.cols; ++j){
+ d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j];
+ }
+ }
+}
data load_all_cifar10()
{
- data d;
+ data d = {0};
d.shallow = 0;
int i,j,b;
matrix X = make_matrix(50000, 3072);
@@ -512,7 +936,7 @@
for(b = 0; b < 5; ++b){
char buff[256];
- sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1);
+ sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1);
FILE *fp = fopen(buff, "rb");
if(!fp) file_error(buff);
for(i = 0; i < 10000; ++i){
@@ -527,11 +951,59 @@
fclose(fp);
}
//normalize_data_rows(d);
- translate_data_rows(d, -128);
- scale_data_rows(d, 1./128);
+ //translate_data_rows(d, -128);
+ scale_data_rows(d, 1./255);
+ smooth_data(d);
return d;
}
+data load_go(char *filename)
+{
+ FILE *fp = fopen(filename, "rb");
+ matrix X = make_matrix(3363059, 361);
+ matrix y = make_matrix(3363059, 361);
+ int row, col;
+
+ if(!fp) file_error(filename);
+ char *label;
+ int count = 0;
+ while((label = fgetl(fp))){
+ int i;
+ if(count == X.rows){
+ X = resize_matrix(X, count*2);
+ y = resize_matrix(y, count*2);
+ }
+ sscanf(label, "%d %d", &row, &col);
+ char *board = fgetl(fp);
+
+ int index = row*19 + col;
+ y.vals[count][index] = 1;
+
+ for(i = 0; i < 19*19; ++i){
+ float val = 0;
+ if(board[i] == '1') val = 1;
+ else if(board[i] == '2') val = -1;
+ X.vals[count][i] = val;
+ }
+ ++count;
+ free(label);
+ free(board);
+ }
+ X = resize_matrix(X, count);
+ y = resize_matrix(y, count);
+
+ data d = {0};
+ d.shallow = 0;
+ d.X = X;
+ d.y = y;
+
+
+ fclose(fp);
+
+ return d;
+}
+
+
void randomize_data(data d)
{
int i;
@@ -571,6 +1043,29 @@
}
}
+data get_random_data(data d, int num)
+{
+ data r = {0};
+ r.shallow = 1;
+
+ r.X.rows = num;
+ r.y.rows = num;
+
+ r.X.cols = d.X.cols;
+ r.y.cols = d.y.cols;
+
+ r.X.vals = calloc(num, sizeof(float *));
+ r.y.vals = calloc(num, sizeof(float *));
+
+ int i;
+ for(i = 0; i < num; ++i){
+ int index = rand()%d.X.rows;
+ r.X.vals[i] = d.X.vals[index];
+ r.y.vals[i] = d.y.vals[index];
+ }
+ return r;
+}
+
data *split_data(data d, int part, int total)
{
data *split = calloc(2, sizeof(data));
--
Gitblit v1.10.0