From c62b4f35aa2c59d7db0fd177affeed14b1ba4bcb Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 08 Sep 2016 07:04:39 +0000
Subject: [PATCH] adding coco models

---
 src/region_layer.c |  307 ++++++++++++++++++++++++++++++++++++---------------
 1 files changed, 216 insertions(+), 91 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 7c34b5c..5fe37c5 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -6,34 +6,31 @@
 #include "cuda.h"
 #include "utils.h"
 #include <stdio.h>
+#include <assert.h>
 #include <string.h>
 #include <stdlib.h>
 
-int get_region_layer_locations(region_layer l)
-{
-    return l.inputs / (l.classes+l.coords);
-}
-
-region_layer make_region_layer(int batch, int inputs, int n, int classes, int coords, int rescore)
+region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
 {
     region_layer l = {0};
     l.type = REGION;
-    
+
     l.n = n;
     l.batch = batch;
-    l.inputs = inputs;
+    l.h = h;
+    l.w = w;
     l.classes = classes;
     l.coords = coords;
-    l.rescore = rescore;
     l.cost = calloc(1, sizeof(float));
-    int outputs = inputs;
-    l.outputs = outputs;
-    l.output = calloc(batch*outputs, sizeof(float));
-    l.delta = calloc(batch*outputs, sizeof(float));
-    #ifdef GPU
-    l.output_gpu = cuda_make_array(0, batch*outputs);
-    l.delta_gpu = cuda_make_array(0, batch*outputs);
-    #endif
+    l.outputs = h*w*n*(classes + coords + 1);
+    l.inputs = l.outputs;
+    l.truths = 30*(5);
+    l.delta = calloc(batch*l.outputs, sizeof(float));
+    l.output = calloc(batch*l.outputs, sizeof(float));
+#ifdef GPU
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
 
     fprintf(stderr, "Region Layer\n");
     srand(0);
@@ -41,107 +38,235 @@
     return l;
 }
 
+box get_region_box2(float *x, int index, int i, int j, int w, int h)
+{
+    float aspect = exp(x[index+0]);
+    float scale  = logistic_activate(x[index+1]);
+    float move_x = x[index+2];
+    float move_y = x[index+3];
+
+    box b;
+    b.w = sqrt(scale * aspect);
+    b.h = b.w * 1./aspect;
+    b.x = move_x * b.w + (i + .5)/w;
+    b.y = move_y * b.h + (j + .5)/h;
+    return b;
+}
+
+float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta)
+{
+    box pred = get_region_box2(output, index, i, j, w, h);
+    float iou = box_iou(pred, truth);
+    float true_aspect = truth.w/truth.h;
+    float true_scale = truth.w*truth.h;
+
+    float true_dx = (truth.x - (i+.5)/w) / truth.w;
+    float true_dy = (truth.y - (j+.5)/h) / truth.h;
+    delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]);
+    delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1]));
+    delta[index + 2] = true_dx - output[index + 2];
+    delta[index + 3] = true_dy - output[index + 3];
+    return iou;
+}
+
+box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic)
+{
+    box b;
+    b.x = (x[index + 0] + i + .5)/w;
+    b.y = (x[index + 1] + j + .5)/h;
+    b.w = x[index + 2];
+    b.h = x[index + 3];
+    if(logistic){
+        b.w = logistic_activate(x[index + 2]);
+        b.h = logistic_activate(x[index + 3]);
+    }
+    if(adjust && b.w < .01) b.w = .01;
+    if(adjust && b.h < .01) b.h = .01;
+    return b;
+}
+
+float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale)
+{
+    box pred = get_region_box(output, index, i, j, w, h, 0, logistic);
+    float iou = box_iou(pred, truth);
+
+    delta[index + 0] = scale * (truth.x - pred.x);
+    delta[index + 1] = scale * (truth.y - pred.y);
+    delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1));
+    delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1));
+    return iou;
+}
+
+float logit(float x)
+{
+    return log(x/(1.-x));
+}
+
+float tisnan(float x)
+{
+    return (x != x);
+}
+
+#define LOG 1
+
 void forward_region_layer(const region_layer l, network_state state)
 {
-    int locations = get_region_layer_locations(l);
-    int i,j;
-    for(i = 0; i < l.batch*locations; ++i){
-        int index = i*(l.classes + l.coords);
-        int mask = (!state.truth || !state.truth[index]);
-
-        for(j = 0; j < l.classes; ++j){
-            l.output[index+j] = state.input[index+j];
-        }
-
-        softmax_array(l.output + index, l.classes, l.output + index);
-        index += l.classes;
-
-        for(j = 0; j < l.coords; ++j){
-            l.output[index+j] = mask*state.input[index+j];
+    int i,j,b,t,n;
+    int size = l.coords + l.classes + 1;
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    for (b = 0; b < l.batch; ++b){
+        for(i = 0; i < l.h*l.w*l.n; ++i){
+            int index = size*i + b*l.outputs;
+            l.output[index + 4] = logistic_activate(l.output[index + 4]);
+            if(l.softmax){
+                softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
+            }
         }
     }
-    if(state.train){
-        float avg_iou = 0;
-        int count = 0;
-        *(l.cost) = 0;
-        int size = l.outputs * l.batch;
-        memset(l.delta, 0, size * sizeof(float));
-        for (i = 0; i < l.batch*locations; ++i) {
-            int offset = i*(l.classes+l.coords);
-            int bg = state.truth[offset];
-            for (j = offset; j < offset+l.classes; ++j) {
-                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
-                //l.delta[j] =  state.truth[j] - l.output[j];
-            }
+    if(!state.train) return;
+    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
+    float avg_iou = 0;
+    float avg_cat = 0;
+    float avg_obj = 0;
+    float avg_anyobj = 0;
+    int count = 0;
+    *(l.cost) = 0;
+    for (b = 0; b < l.batch; ++b) {
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                    box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
+                    float best_iou = 0;
+                    for(t = 0; t < 30; ++t){
+                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
+                        if(!truth.x) break;
+                        float iou = box_iou(pred, truth);
+                        if (iou > best_iou) best_iou = iou;
+                    }
+                    avg_anyobj += l.output[index + 4];
+                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    if(best_iou > .5) l.delta[index + 4] = 0;
 
-            box anchor = {0,0,.5,.5};
-            box truth_code = {state.truth[j+0], state.truth[j+1], state.truth[j+2], state.truth[j+3]};
-            box out_code =   {l.output[j+0], l.output[j+1], l.output[j+2], l.output[j+3]};
-            box out = decode_box(out_code, anchor);
-            box truth = decode_box(truth_code, anchor);
-
-            if(bg) continue;
-            //printf("Box:       %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
-            //printf("Code:      %f %f %f %f\n", truth_code.x, truth_code.y, truth_code.w, truth_code.h);
-            //printf("Pred     : %f %f %f %f\n", out.x, out.y, out.w, out.h);
-            // printf("Pred Code: %f %f %f %f\n", out_code.x, out_code.y, out_code.w, out_code.h);
-            float iou = box_iou(out, truth);
-            avg_iou += iou;
-            ++count;
-
-            /*
-             *(l.cost) += pow((1-iou), 2);
-             l.delta[j+0] = (state.truth[j+0] - l.output[j+0]);
-             l.delta[j+1] = (state.truth[j+1] - l.output[j+1]);
-             l.delta[j+2] = (state.truth[j+2] - l.output[j+2]);
-             l.delta[j+3] = (state.truth[j+3] - l.output[j+3]);
-             */
-
-            for (j = offset+l.classes; j < offset+l.classes+l.coords; ++j) {
-                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
-                //l.delta[j] =  state.truth[j] - l.output[j];
-                float diff = state.truth[j] - l.output[j];
-                if (fabs(diff) < 1){
-                    l.delta[j] = diff;
-                    *(l.cost) += .5*pow(state.truth[j] - l.output[j], 2);
-                } else {
-                    l.delta[j] = (diff > 0) ? 1 : -1;
-                    *(l.cost) += fabs(diff) - .5;
+                    if(*(state.net.seen) < 6400){
+                        box truth = {0};
+                        truth.x = (i + .5)/l.w;
+                        truth.y = (j + .5)/l.h;
+                        truth.w = .5;
+                        truth.h = .5;
+                        delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
+                    }
                 }
-                //l.delta[j] = state.truth[j] - l.output[j];
             }
+        }
+        for(t = 0; t < 30; ++t){
+            box truth = float_to_box(state.truth + t*5 + b*l.truths);
+            int class = state.truth[t*5 + b*l.truths + 4];
+            if(!truth.x) break;
+            float best_iou = 0;
+            int best_index = 0;
+            int best_n = 0;
+            i = (truth.x * l.w);
+            j = (truth.y * l.h);
+            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
+            box truth_shift = truth;
+            truth_shift.x = 0;
+            truth_shift.y = 0;
+            printf("index %d %d\n",i, j);
+            for(n = 0; n < l.n; ++n){
+                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
+                printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
+                pred.x = 0;
+                pred.y = 0;
+                float iou = box_iou(pred, truth_shift);
+                if (iou > best_iou){
+                    best_index = index;
+                    best_iou = iou;
+                    best_n = n;
+                }
+            }
+            printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
 
+            float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale);
+            avg_iou += iou;
+
+            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
+            avg_obj += l.output[best_index + 4];
+            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            if (l.rescore) {
+                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            }
+            //printf("%f\n", l.delta[best_index+1]);
             /*
-               if(l.rescore){
-               for (j = offset; j < offset+l.classes; ++j) {
-               if(state.truth[j]) state.truth[j] = iou;
-               l.delta[j] =  state.truth[j] - l.output[j];
-               }
+               if(isnan(l.delta[best_index+1])){
+               printf("%f\n", true_scale);
+               printf("%f\n", l.output[best_index + 1]);
+               printf("%f\n", truth.w);
+               printf("%f\n", truth.h);
+               error("bad");
                }
              */
+            for(n = 0; n < l.classes; ++n){
+                l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
+                if(n == class) avg_cat += l.output[best_index + 5 + n];
+            }
+            /*
+               if(0){
+               printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
+               printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
+               float aspect = exp(true_aspect);
+               float scale  = logistic_activate(true_scale);
+               float move_x = true_dx;
+               float move_y = true_dy;
+
+               box b;
+               b.w = sqrt(scale * aspect);
+               b.h = b.w * 1./aspect;
+               b.x = move_x * b.w + (i + .5)/l.w;
+               b.y = move_y * b.h + (j + .5)/l.h;
+               printf("%f %f\n", b.x, truth.x);
+               printf("%f %f\n", b.y, truth.y);
+               printf("%f %f\n", b.w, truth.w);
+               printf("%f %f\n", b.h, truth.h);
+            //printf("%f\n", box_iou(b, truth));
+            }
+             */
+            ++count;
         }
-        printf("Avg IOU: %f\n", avg_iou/count);
     }
+    printf("\n");
+    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count);
 }
 
 void backward_region_layer(const region_layer l, network_state state)
 {
-    axpy_cpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
-    //copy_cpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
 
 void forward_region_layer_gpu(const region_layer l, network_state state)
 {
+    /*
+       if(!state.train){
+       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+       return;
+       }
+     */
+
     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
     if(state.truth){
-        truth_cpu = calloc(l.batch*l.outputs, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, l.batch*l.outputs);
+        int num_truth = l.batch*l.truths;
+        truth_cpu = calloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
     cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
-    network_state cpu_state;
+    network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
     cpu_state.input = in_cpu;
@@ -154,7 +279,7 @@
 
 void backward_region_layer_gpu(region_layer l, network_state state)
 {
-    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
+    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
     //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
 }
 #endif

--
Gitblit v1.10.0