From c6ecf1e0420737eafeb99b27b1d716b46a6cbb7a Mon Sep 17 00:00:00 2001
From: Jud White <github@judsonwhite.com>
Date: Sun, 25 Mar 2018 20:41:48 +0000
Subject: [PATCH] README.md: add notes to How to compile on Windows

---
 src/detector.c |  253 ++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 234 insertions(+), 19 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index d860a6a..3dfbce6 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -10,7 +10,9 @@
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #include "opencv2/core/core_c.h"
+//#include "opencv2/core/core.hpp"
 #include "opencv2/core/version.hpp"
+#include "opencv2/imgproc/imgproc_c.h"
 
 #ifndef CV_VERSION_EPOCH
 #include "opencv2/videoio/videoio_c.h"
@@ -23,11 +25,13 @@
 #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib")
 #endif
 
-#endif
+IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size);
+void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches);
+#endif	// OPENCV
 
 static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
+void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show)
 {
     list *options = read_data_cfg(datacfg);
     char *train_images = option_find_str(options, "train", "data/train.list");
@@ -72,6 +76,8 @@
 
 	int init_w = net.w;
 	int init_h = net.h;
+	int iter_save;
+	iter_save = get_current_batch(net);
 
     load_args args = {0};
     args.w = net.w;
@@ -85,13 +91,22 @@
 	args.small_object = l.small_object;
     args.d = &buffer;
     args.type = DETECTION_DATA;
-	args.threads = 4;// 8;
+	args.threads = 64;	// 8
 
     args.angle = net.angle;
     args.exposure = net.exposure;
     args.saturation = net.saturation;
     args.hue = net.hue;
 
+#ifdef OPENCV
+	IplImage* img = NULL;
+	float max_img_loss = 5;
+	int number_of_lines = 100;
+	int img_size = 1000;
+	if (!dont_show)
+		img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size);
+#endif	//OPENCV
+
     pthread_t load_thread = load_data(args);
     clock_t time;
     int count = 0;
@@ -100,7 +115,6 @@
 		if(l.random && count++%10 == 0){
             printf("Resizing\n");
 			int dim = (rand() % 12 + (init_w/32 - 5)) * 32;	// +-160
-            //int dim = (rand() % 10 + 10) * 32;
             //if (get_current_batch(net)+100 > net.max_batches) dim = 544;
             //int dim = (rand() % 4 + 16) * 32;
             printf("%d\n", dim);
@@ -157,8 +171,16 @@
 
         i = get_current_batch(net);
         printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+
+#ifdef OPENCV
+		if(!dont_show)
+			draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches);
+#endif	// OPENCV
+
 		//if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
-		if (i % 100 == 0) {
+		//if (i % 100 == 0) {
+		if(i >= (iter_save + 100)) {
+			iter_save = i;
 #ifdef GPU
 			if (ngpus != 1) sync_nets(nets, ngpus, 0);
 #endif
@@ -174,6 +196,9 @@
     char buff[256];
     sprintf(buff, "%s/%s_final.weights", backup_directory, base);
     save_weights(net, buff);
+
+	//cvReleaseImage(&img);
+	//cvDestroyAllWindows();
 }
 
 
@@ -245,8 +270,8 @@
         if (ymax > h) ymax = h;
 
         for(j = 0; j < classes; ++j){
-            int class = j;
-            if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
+            int class_id = j;
+            if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id],
                     xmin, ymin, xmax, ymax);
         }
     }
@@ -495,7 +520,7 @@
 	return 0;
 }
 
-void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile)
+void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou)
 {
 	int j;
 	list *options = read_data_cfg(datacfg);
@@ -552,7 +577,7 @@
 	args.h = net.h;
 	args.type = IMAGE_DATA;
 
-	const float thresh_calc_avg_iou = 0.24;
+	//const float thresh_calc_avg_iou = 0.24;
 	float avg_iou = 0;
 	int tp_for_thresh = 0;
 	int fp_for_thresh = 0;
@@ -772,15 +797,21 @@
 					}
 				}
 			}
-			//printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision);
+			//printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
 
 			avg_precision += cur_precision;
 		}
 		avg_precision = avg_precision / 11;
-		printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
+		printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
 		mean_average_precision += avg_precision;
 	}
 	
+	const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
+	const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
+	const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
+	printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
+		thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
+
 	printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", 
 		thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
 
@@ -798,7 +829,178 @@
 	fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
-void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
+#ifdef OPENCV
+void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show)
+{
+	printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
+
+	//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
+	float *rel_width_height_array = calloc(1000, sizeof(float));
+
+	list *options = read_data_cfg(datacfg);
+	char *train_images = option_find_str(options, "train", "data/train.list");
+	list *plist = get_paths(train_images);
+	int number_of_images = plist->size;
+	char **paths = (char **)list_to_array(plist);
+
+	int number_of_boxes = 0;
+	printf(" read labels from %d images \n", number_of_images);
+
+	int i, j;
+	for (i = 0; i < number_of_images; ++i) {
+		char *path = paths[i];
+		char labelpath[4096];
+		find_replace(path, "images", "labels", labelpath);
+		find_replace(labelpath, "JPEGImages", "labels", labelpath);
+		find_replace(labelpath, ".jpg", ".txt", labelpath);
+		find_replace(labelpath, ".JPEG", ".txt", labelpath);
+		find_replace(labelpath, ".png", ".txt", labelpath);
+		int num_labels = 0;
+		box_label *truth = read_boxes(labelpath, &num_labels);
+		//printf(" new path: %s \n", labelpath);
+		for (j = 0; j < num_labels; ++j)
+		{
+			number_of_boxes++;
+			rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
+			rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width;
+			rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height;
+			printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
+		}
+	}
+	printf("\n all loaded. \n");
+
+	CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
+	CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
+	CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
+
+	for (i = 0; i < number_of_boxes; ++i) {
+		points->data.fl[i * 2] = rel_width_height_array[i * 2];
+		points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
+		//cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
+		//cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
+	}
+
+
+	const int attemps = 10;
+	double compactness;
+
+	enum {
+		KMEANS_RANDOM_CENTERS = 0,
+		KMEANS_USE_INITIAL_LABELS = 1,
+		KMEANS_PP_CENTERS = 2
+	};
+	
+	printf("\n calculating k-means++ ...");
+	// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
+	cvKMeans2(points, num_of_clusters, labels, 
+		cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 
+		0, KMEANS_PP_CENTERS,
+		centers, &compactness);
+	
+	//orig 2.0 anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+	//float orig_anch[] = { 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52 };
+	// worse than ours (even for 19x19 final size - for input size 608x608)
+
+	//orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071
+	//float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 };
+	// orig (IoU=59.90%) better than ours (59.75%)
+
+	//gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
+	//float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
+
+	// ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595
+	//float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 };
+	//for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i];
+	
+	//for (i = 0; i < number_of_boxes; ++i)
+	//	printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
+
+	float avg_iou = 0;
+	for (i = 0; i < number_of_boxes; ++i) {
+		float box_w = points->data.fl[i * 2];
+		float box_h = points->data.fl[i * 2 + 1];
+		//int cluster_idx = labels->data.i[i];		
+		int cluster_idx = 0;
+		float min_dist = FLT_MAX;
+		for (j = 0; j < num_of_clusters; ++j) {
+			float anchor_w = centers->data.fl[j * 2];
+			float anchor_h = centers->data.fl[j * 2 + 1];
+			float w_diff = anchor_w - box_w;
+			float h_diff = anchor_h - box_h;
+			float distance = sqrt(w_diff*w_diff + h_diff*h_diff);
+			if (distance < min_dist) min_dist = distance, cluster_idx = j;
+		}
+		
+		float anchor_w = centers->data.fl[cluster_idx * 2];
+		float anchor_h = centers->data.fl[cluster_idx * 2 + 1];
+		float min_w = (box_w < anchor_w) ? box_w : anchor_w;
+		float min_h = (box_h < anchor_h) ? box_h : anchor_h;
+		float box_intersect = min_w*min_h;
+		float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
+		float iou = box_intersect / box_union;
+		if (iou > 1 || iou < 0) {
+			printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n",
+				i, box_w, box_h, anchor_w, anchor_h, iou);
+		}
+		else avg_iou += iou;
+	}
+	avg_iou = 100 * avg_iou / number_of_boxes;
+	printf("\n avg IoU = %2.2f %% \n", avg_iou);
+
+	char buff[1024];
+	FILE* fw = fopen("anchors.txt", "wb");
+	printf("\nSaving anchors to the file: anchors.txt \n");
+	printf("anchors = ");
+	for (i = 0; i < num_of_clusters; ++i) {
+		sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
+		printf("%s, ", buff);
+		fwrite(buff, sizeof(char), strlen(buff), fw);
+		if (i + 1 < num_of_clusters) fwrite(", ", sizeof(char), 2, fw);;
+	}
+	printf("\n");
+	fclose(fw);
+
+	if (show) {
+		size_t img_size = 700;
+		IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
+		cvZero(img);
+		for (j = 0; j < num_of_clusters; ++j) {
+			CvPoint pt1, pt2;
+			pt1.x = pt1.y = 0;
+			pt2.x = centers->data.fl[j * 2] * img_size / final_width;
+			pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height;
+			cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
+		}
+
+		for (i = 0; i < number_of_boxes; ++i) {
+			CvPoint pt;
+			pt.x = points->data.fl[i * 2] * img_size / final_width;
+			pt.y = points->data.fl[i * 2 + 1] * img_size / final_height;
+			int cluster_idx = labels->data.i[i];
+			int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
+			int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
+			int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255;
+			cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0);
+			//if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y);
+		}
+		cvShowImage("clusters", img);
+		cvWaitKey(0);
+		cvReleaseImage(&img);
+		cvDestroyAllWindows();
+	}
+
+	free(rel_width_height_array);
+	cvReleaseMat(&points);
+	cvReleaseMat(&centers);
+	cvReleaseMat(&labels);
+}
+#else
+void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) {
+	printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
+}
+#endif // OPENCV
+
+void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show)
 {
     list *options = read_data_cfg(datacfg);
     char *name_list = option_find_str(options, "names", "data/names.list");
@@ -829,6 +1031,7 @@
         }
         image im = load_image_color(input,0,0);
         image sized = resize_image(im, net.w, net.h);
+		//image sized = letterbox_image(im, net.w, net.h);
         layer l = net.layers[net.n-1];
 
         box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
@@ -843,15 +1046,19 @@
         if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
         draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
         save_image(im, "predictions");
-        show_image(im, "predictions");
+		if (!dont_show) {
+			show_image(im, "predictions");
+		}
 
         free_image(im);
         free_image(sized);
         free(boxes);
         free_ptrs((void **)probs, l.w*l.h*l.n);
 #ifdef OPENCV
-        cvWaitKey(0);
-        cvDestroyAllWindows();
+		if (!dont_show) {
+			cvWaitKey(0);
+			cvDestroyAllWindows();
+		}
 #endif
         if (filename) break;
     }
@@ -859,11 +1066,17 @@
 
 void run_detector(int argc, char **argv)
 {
+	int dont_show = find_arg(argc, argv, "-dont_show");
+	int show = find_arg(argc, argv, "-show");
+	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
 	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
     char *prefix = find_char_arg(argc, argv, "-prefix", 0);
     float thresh = find_float_arg(argc, argv, "-thresh", .24);
     int cam_index = find_int_arg(argc, argv, "-c", 0);
     int frame_skip = find_int_arg(argc, argv, "-s", 0);
+	int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
+	int final_width = find_int_arg(argc, argv, "-final_width", 13);
+	int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13);
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -899,11 +1112,12 @@
 	if(weights)
 		if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
     char *filename = (argc > 6) ? argv[6]: 0;
-    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
+    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show);
+    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
     else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
-	else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights);
+	else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
+	else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
     else if(0==strcmp(argv[2], "demo")) {
         list *options = read_data_cfg(datacfg);
         int classes = option_find_int(options, "classes", 20);
@@ -911,6 +1125,7 @@
         char **names = get_labels(name_list);
 		if(filename)
 			if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
-        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename);
+        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, 
+			http_stream_port, dont_show);
     }
 }

--
Gitblit v1.10.0