From c7b10ceadb1a78e7480d281444a31ae2a7dc1b05 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 06 May 2016 23:25:16 +0000
Subject: [PATCH] so much need to commit

---
 src/convolutional_layer.c |  234 ++++++++++++++++++++++++++++++++++++++++++++++++++++-----
 1 files changed, 211 insertions(+), 23 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 378e23f..d76dfcd 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,5 +1,6 @@
 #include "convolutional_layer.h"
 #include "utils.h"
+#include "batchnorm_layer.h"
 #include "im2col.h"
 #include "col2im.h"
 #include "blas.h"
@@ -7,6 +8,52 @@
 #include <stdio.h>
 #include <time.h>
 
+void swap_binary(convolutional_layer *l)
+{
+    float *swap = l->filters;
+    l->filters = l->binary_filters;
+    l->binary_filters = swap;
+
+    #ifdef GPU
+    swap = l->filters_gpu;
+    l->filters_gpu = l->binary_filters_gpu;
+    l->binary_filters_gpu = swap;
+    #endif
+}
+
+void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
+{
+    int i, k, f;
+    for(f = 0; f < n; ++f){
+        float mean = 0;
+        for(i = 0; i < size; ++i){
+            mean += fabs(filters[f*size + i]);
+        }
+        mean = mean / size;
+        scales[f] = mean;
+        for(i = 0; i < size/8; ++i){
+            binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
+            for(k = 0; k < 8; ++k){
+            }
+        }
+    }
+}
+
+void binarize_filters(float *filters, int n, int size, float *binary)
+{
+    int i, f;
+    for(f = 0; f < n; ++f){
+        float mean = 0;
+        for(i = 0; i < size; ++i){
+            mean += fabs(filters[f*size + i]);
+        }
+        mean = mean / size;
+        for(i = 0; i < size; ++i){
+            binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
+        }
+    }
+}
+
 int convolutional_out_height(convolutional_layer l)
 {
     int h = l.h;
@@ -41,7 +88,7 @@
     return float_to_image(w,h,c,l.delta);
 }
 
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
 {
     int i;
     convolutional_layer l = {0};
@@ -51,22 +98,22 @@
     l.w = w;
     l.c = c;
     l.n = n;
+    l.binary = binary;
     l.batch = batch;
     l.stride = stride;
     l.size = size;
     l.pad = pad;
+    l.batch_normalize = batch_normalize;
 
     l.filters = calloc(c*n*size*size, sizeof(float));
     l.filter_updates = calloc(c*n*size*size, sizeof(float));
 
     l.biases = calloc(n, sizeof(float));
     l.bias_updates = calloc(n, sizeof(float));
-    //float scale = 1./sqrt(size*size*c);
+
+    // float scale = 1./sqrt(size*size*c);
     float scale = sqrt(2./(size*size*c));
-    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
-    for(i = 0; i < n; ++i){
-        l.biases[i] = scale;
-    }
+    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     l.out_h = out_h;
@@ -79,17 +126,63 @@
     l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
     l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
 
-    #ifdef GPU
+    if(binary){
+        l.binary_filters = calloc(c*n*size*size, sizeof(float));
+        l.cfilters = calloc(c*n*size*size, sizeof(char));
+        l.scales = calloc(n, sizeof(float));
+    }
+
+    if(batch_normalize){
+        l.scales = calloc(n, sizeof(float));
+        l.scale_updates = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            l.scales[i] = 1;
+        }
+
+        l.mean = calloc(n, sizeof(float));
+        l.variance = calloc(n, sizeof(float));
+
+        l.rolling_mean = calloc(n, sizeof(float));
+        l.rolling_variance = calloc(n, sizeof(float));
+    }
+
+#ifdef GPU
     l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
     l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
 
     l.biases_gpu = cuda_make_array(l.biases, n);
     l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
 
+    l.scales_gpu = cuda_make_array(l.scales, n);
+    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
     l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
     l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
     l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-    #endif
+
+    if(binary){
+        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+    }
+    if(xnor){
+        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
+    }
+    l.xnor = xnor;
+
+    if(batch_normalize){
+        l.mean_gpu = cuda_make_array(l.mean, n);
+        l.variance_gpu = cuda_make_array(l.variance, n);
+
+        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+        l.mean_delta_gpu = cuda_make_array(l.mean, n);
+        l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+    }
+#endif
     l.activation = activation;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -97,6 +190,42 @@
     return l;
 }
 
+void denormalize_convolutional_layer(convolutional_layer l)
+{
+    int i, j;
+    for(i = 0; i < l.n; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        for(j = 0; j < l.c*l.size*l.size; ++j){
+            l.filters[i*l.c*l.size*l.size + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+    }
+}
+
+void test_convolutional_layer()
+{
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
+    l.batch_normalize = 1;
+    float data[] = {1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3};
+    network_state state = {0};
+    state.input = data;
+    forward_convolutional_layer(l, state);
+}
+
 void resize_convolutional_layer(convolutional_layer *l, int w, int h)
 {
     l->w = w;
@@ -111,30 +240,42 @@
     l->inputs = l->w * l->h * l->c;
 
     l->col_image = realloc(l->col_image,
-                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
+            out_h*out_w*l->size*l->size*l->c*sizeof(float));
     l->output = realloc(l->output,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
+            l->batch*out_h * out_w * l->n*sizeof(float));
     l->delta  = realloc(l->delta,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
+            l->batch*out_h * out_w * l->n*sizeof(float));
 
-    #ifdef GPU
+#ifdef GPU
     cuda_free(l->col_image_gpu);
     cuda_free(l->delta_gpu);
     cuda_free(l->output_gpu);
 
-    l->col_image_gpu = cuda_make_array(0, out_h*out_w*l->size*l->size*l->c);
-    l->delta_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
-    l->output_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
-    #endif
+    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+#endif
 }
 
-void bias_output(float *output, float *biases, int batch, int n, int size)
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
     for(b = 0; b < batch; ++b){
         for(i = 0; i < n; ++i){
             for(j = 0; j < size; ++j){
-                output[(b*n + i)*size + j] = biases[i];
+                output[(b*n + i)*size + j] += biases[i];
+            }
+        }
+    }
+}
+
+void scale_bias(float *output, float *scales, int batch, int n, int size)
+{
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
             }
         }
     }
@@ -150,14 +291,42 @@
     }
 }
 
-
-void forward_convolutional_layer(const convolutional_layer l, network_state state)
+void forward_convolutional_layer(convolutional_layer l, network_state state)
 {
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     int i;
 
-    bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
+    /*
+    if(l.binary){
+        binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
+        binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
+        swap_binary(&l);
+    }
+    */
+
+    if(l.binary){
+        int m = l.n;
+        int k = l.size*l.size*l.c;
+        int n = out_h*out_w;
+
+        char  *a = l.cfilters;
+        float *b = l.col_image;
+        float *c = l.output;
+
+        for(i = 0; i < l.batch; ++i){
+            im2col_cpu(state.input, l.c, l.h, l.w, 
+                    l.size, l.stride, l.pad, b);
+            gemm_bin(m,n,k,1,a,k,b,n,c,n);
+            c += n*m;
+            state.input += l.c*l.h*l.w;
+        }
+        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
+        add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+        activate_array(l.output, m*n*l.batch, l.activation);
+        return;
+    }
 
     int m = l.n;
     int k = l.size*l.size*l.c;
@@ -169,11 +338,17 @@
 
     for(i = 0; i < l.batch; ++i){
         im2col_cpu(state.input, l.c, l.h, l.w, 
-            l.size, l.stride, l.pad, b);
+                l.size, l.stride, l.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         c += n*m;
         state.input += l.c*l.h*l.w;
     }
+
+    if(l.batch_normalize){
+        forward_batchnorm_layer(l, state);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
     activate_array(l.output, m*n*l.batch, l.activation);
 }
 
@@ -242,13 +417,26 @@
     }
 }
 
+void rescale_filters(convolutional_layer l, float scale, float trans)
+{
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_filter(l, i);
+        if (im.c == 3) {
+            scale_image(im, scale);
+            float sum = sum_array(im.data, im.w*im.h*im.c);
+            l.biases[i] += sum*trans;
+        }
+    }
+}
+
 image *get_filters(convolutional_layer l)
 {
     image *filters = calloc(l.n, sizeof(image));
     int i;
     for(i = 0; i < l.n; ++i){
         filters[i] = copy_image(get_convolutional_filter(l, i));
-        normalize_image(filters[i]);
+        //normalize_image(filters[i]);
     }
     return filters;
 }

--
Gitblit v1.10.0