From c7b10ceadb1a78e7480d281444a31ae2a7dc1b05 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 06 May 2016 23:25:16 +0000
Subject: [PATCH] so much need to commit

---
 src/network.c |   30 +++++++++++++++++++++++++++++-
 1 files changed, 29 insertions(+), 1 deletions(-)

diff --git a/src/network.c b/src/network.c
index 32c3ba1..ca485d6 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,13 +8,16 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
 #include "rnn_layer.h"
+#include "crnn_layer.h"
 #include "local_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "maxpool_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
@@ -85,6 +88,10 @@
             return "connected";
         case RNN:
             return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
         case MAXPOOL:
             return "maxpool";
         case AVGPOOL:
@@ -105,6 +112,8 @@
             return "shortcut";
         case NORMALIZATION:
             return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
         default:
             break;
     }
@@ -143,12 +152,18 @@
             forward_local_layer(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            forward_batchnorm_layer(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer(l, state);
         } else if(l.type == RNN){
             forward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            forward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer(l, state);
         } else if(l.type == CROP){
             forward_crop_layer(l, state);
         } else if(l.type == COST){
@@ -185,6 +200,10 @@
             update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == RNN){
             update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == GRU){
+            update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == LOCAL){
             update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
@@ -193,6 +212,9 @@
 
 float *get_network_output(network net)
 {
+    #ifdef GPU
+        return get_network_output_gpu(net);
+    #endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -205,7 +227,7 @@
     int count = 0;
     for(i = 0; i < net.n; ++i){
         if(net.layers[i].type == COST){
-            sum += net.layers[i].output[0];
+            sum += net.layers[i].cost[0];
             ++count;
         }
         if(net.layers[i].type == DETECTION){
@@ -247,6 +269,8 @@
             backward_activation_layer(l, state);
         } else if(l.type == NORMALIZATION){
             backward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            backward_batchnorm_layer(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer(l, state);
         } else if(l.type == AVGPOOL){
@@ -261,6 +285,10 @@
             backward_connected_layer(l, state);
         } else if(l.type == RNN){
             backward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            backward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer(l, state);
         } else if(l.type == LOCAL){
             backward_local_layer(l, state);
         } else if(l.type == COST){

--
Gitblit v1.10.0