From c7b10ceadb1a78e7480d281444a31ae2a7dc1b05 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 06 May 2016 23:25:16 +0000
Subject: [PATCH] so much need to commit

---
 src/network.c |  181 ++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 162 insertions(+), 19 deletions(-)

diff --git a/src/network.c b/src/network.c
index 5b52da9..ca485d6 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,29 +4,94 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "blas.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "maxpool_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "route_layer.h"
+#include "shortcut_layer.h"
+
+int get_current_batch(network net)
+{
+    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
+    return batch_num;
+}
+
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
+    #ifdef GPU
+        if(gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
+float get_current_rate(network net)
+{
+    int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+    switch (net.policy) {
+        case CONSTANT:
+            return net.learning_rate;
+        case STEP:
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+            }
+            return rate;
+        case EXP:
+            return net.learning_rate * pow(net.gamma, batch_num);
+        case POLY:
+            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
+        default:
+            fprintf(stderr, "Policy is weird!\n");
+            return net.learning_rate;
+    }
+}
 
 char *get_layer_string(LAYER_TYPE a)
 {
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case ACTIVE:
+            return "activation";
+        case LOCAL:
+            return "local";
         case DECONVOLUTIONAL:
             return "deconvolutional";
         case CONNECTED:
             return "connected";
+        case RNN:
+            return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
         case MAXPOOL:
             return "maxpool";
         case AVGPOOL:
@@ -43,8 +108,12 @@
             return "cost";
         case ROUTE:
             return "route";
+        case SHORTCUT:
+            return "shortcut";
         case NORMALIZATION:
             return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
         default:
             break;
     }
@@ -56,6 +125,7 @@
     network net = {0};
     net.n = n;
     net.layers = calloc(net.n, sizeof(layer));
+    net.seen = calloc(1, sizeof(int));
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
@@ -67,6 +137,7 @@
 {
     int i;
     for(i = 0; i < net.n; ++i){
+        state.index = i;
         layer l = net.layers[i];
         if(l.delta){
             scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
@@ -75,12 +146,24 @@
             forward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            forward_activation_layer(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            forward_batchnorm_layer(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            forward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            forward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            forward_crnn_layer(l, state);
         } else if(l.type == CROP){
             forward_crop_layer(l, state);
         } else if(l.type == COST){
@@ -95,6 +178,8 @@
             forward_dropout_layer(l, state);
         } else if(l.type == ROUTE){
             forward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            forward_shortcut_layer(l, state);
         }
         state.input = l.output;
     }
@@ -104,20 +189,32 @@
 {
     int i;
     int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
         } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
+            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
-            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == RNN){
+            update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == GRU){
+            update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == CRNN){
+            update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
 float *get_network_output(network net)
 {
+    #ifdef GPU
+        return get_network_output_gpu(net);
+    #endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -125,13 +222,20 @@
 
 float get_network_cost(network net)
 {
-    if(net.layers[net.n-1].type == COST){
-        return net.layers[net.n-1].output[0];
+    int i;
+    float sum = 0;
+    int count = 0;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == COST){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
+        if(net.layers[i].type == DETECTION){
+            sum += net.layers[i].cost[0];
+            ++count;
+        }
     }
-    if(net.layers[net.n-1].type == DETECTION){
-        return net.layers[net.n-1].cost[0];
-    }
-    return 0;
+    return sum/count;
 }
 
 int get_predicted_class_network(network net)
@@ -147,6 +251,7 @@
     float *original_input = state.input;
     float *original_delta = state.delta;
     for(i = net.n-1; i >= 0; --i){
+        state.index = i;
         if(i == 0){
             state.input = original_input;
             state.delta = original_delta;
@@ -160,8 +265,12 @@
             backward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             backward_deconvolutional_layer(l, state);
+        } else if(l.type == ACTIVE){
+            backward_activation_layer(l, state);
         } else if(l.type == NORMALIZATION){
             backward_normalization_layer(l, state);
+        } else if(l.type == BATCHNORM){
+            backward_batchnorm_layer(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer(l, state);
         } else if(l.type == AVGPOOL){
@@ -174,20 +283,33 @@
             if(i != 0) backward_softmax_layer(l, state);
         } else if(l.type == CONNECTED){
             backward_connected_layer(l, state);
+        } else if(l.type == RNN){
+            backward_rnn_layer(l, state);
+        } else if(l.type == GRU){
+            backward_gru_layer(l, state);
+        } else if(l.type == CRNN){
+            backward_crnn_layer(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer(l, state);
         } else if(l.type == COST){
             backward_cost_layer(l, state);
         } else if(l.type == ROUTE){
             backward_route_layer(l, net);
+        } else if(l.type == SHORTCUT){
+            backward_shortcut_layer(l, state);
         }
     }
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    #ifdef GPU
+    *net.seen += net.batch;
+#ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
-    #endif
+#endif
     network_state state;
+    state.index = 0;
+    state.net = net;
     state.input = x;
     state.delta = 0;
     state.truth = y;
@@ -195,7 +317,7 @@
     forward_network(net, state);
     backward_network(net, state);
     float error = get_network_cost(net);
-    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
+    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
     return error;
 }
 
@@ -208,7 +330,6 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        net.seen += batch;
         get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
@@ -229,7 +350,6 @@
     float sum = 0;
     for(i = 0; i < n; ++i){
         get_next_batch(d, batch, i*batch, X, y);
-        net.seen += batch;
         float err = train_network_datum(net, X, y);
         sum += err;
     }
@@ -242,6 +362,8 @@
 {
     int i,j;
     network_state state;
+    state.index = 0;
+    state.net = net;
     state.train = 1;
     state.delta = 0;
     float sum = 0;
@@ -275,25 +397,31 @@
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
     net->h = h;
+    int inputs = 0;
     //fprintf(stderr, "Resizing to %d x %d...", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
+        }else if(l.type == CROP){
+            resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
             resize_avgpool_layer(&l, w, h);
-            break;
         }else if(l.type == NORMALIZATION){
             resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
         }else{
             error("Cannot resize this type of layer");
         }
+        inputs = l.outputs;
         net->layers[i] = l;
         w = l.out_w;
         h = l.out_h;
+        if(l.type == AVGPOOL) break;
     }
     //fprintf(stderr, " Done!\n");
     return 0;
@@ -374,6 +502,8 @@
 #endif
 
     network_state state;
+    state.net = net;
+    state.index = 0;
     state.input = input;
     state.truth = 0;
     state.train = 0;
@@ -481,12 +611,12 @@
     return acc;
 }
 
-float *network_accuracies(network net, data d)
+float *network_accuracies(network net, data d, int n)
 {
     static float acc[2];
     matrix guess = network_predict_data(net, d);
-    acc[0] = matrix_topk_accuracy(d.y, guess,1);
-    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
     free_matrix(guess);
     return acc;
 }
@@ -500,4 +630,17 @@
     return acc;
 }
 
-
+void free_network(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        free_layer(net.layers[i]);
+    }
+    free(net.layers);
+    #ifdef GPU
+    if(*net.input_gpu) cuda_free(*net.input_gpu);
+    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
+    if(net.input_gpu) free(net.input_gpu);
+    if(net.truth_gpu) free(net.truth_gpu);
+    #endif
+}

--
Gitblit v1.10.0