From c7b10ceadb1a78e7480d281444a31ae2a7dc1b05 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 06 May 2016 23:25:16 +0000
Subject: [PATCH] so much need to commit
---
src/network.c | 50 ++++++++++++++++++++++++++++++++++++++++++++++++--
1 files changed, 48 insertions(+), 2 deletions(-)
diff --git a/src/network.c b/src/network.c
index 8dee8cc..ca485d6 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,11 +8,16 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "gru_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
+#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
+#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
@@ -73,12 +78,20 @@
switch(a){
case CONVOLUTIONAL:
return "convolutional";
+ case ACTIVE:
+ return "activation";
case LOCAL:
return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
+ case RNN:
+ return "rnn";
+ case GRU:
+ return "gru";
+ case CRNN:
+ return "crnn";
case MAXPOOL:
return "maxpool";
case AVGPOOL:
@@ -99,6 +112,8 @@
return "shortcut";
case NORMALIZATION:
return "normalization";
+ case BATCHNORM:
+ return "batchnorm";
default:
break;
}
@@ -131,14 +146,24 @@
forward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ forward_activation_layer(l, state);
} else if(l.type == LOCAL){
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ forward_batchnorm_layer(l, state);
} else if(l.type == DETECTION){
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ forward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ forward_gru_layer(l, state);
+ } else if(l.type == CRNN){
+ forward_crnn_layer(l, state);
} else if(l.type == CROP){
forward_crop_layer(l, state);
} else if(l.type == COST){
@@ -173,6 +198,12 @@
update_deconvolutional_layer(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == RNN){
+ update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == GRU){
+ update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == CRNN){
+ update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
@@ -181,6 +212,9 @@
float *get_network_output(network net)
{
+ #ifdef GPU
+ return get_network_output_gpu(net);
+ #endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
@@ -193,7 +227,7 @@
int count = 0;
for(i = 0; i < net.n; ++i){
if(net.layers[i].type == COST){
- sum += net.layers[i].output[0];
+ sum += net.layers[i].cost[0];
++count;
}
if(net.layers[i].type == DETECTION){
@@ -231,8 +265,12 @@
backward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
backward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ backward_batchnorm_layer(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
@@ -245,6 +283,12 @@
if(i != 0) backward_softmax_layer(l, state);
} else if(l.type == CONNECTED){
backward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ backward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ backward_gru_layer(l, state);
+ } else if(l.type == CRNN){
+ backward_crnn_layer(l, state);
} else if(l.type == LOCAL){
backward_local_layer(l, state);
} else if(l.type == COST){
@@ -360,11 +404,12 @@
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
+ }else if(l.type == CROP){
+ resize_crop_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else if(l.type == AVGPOOL){
resize_avgpool_layer(&l, w, h);
- break;
}else if(l.type == NORMALIZATION){
resize_normalization_layer(&l, w, h);
}else if(l.type == COST){
@@ -376,6 +421,7 @@
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
+ if(l.type == AVGPOOL) break;
}
//fprintf(stderr, " Done!\n");
return 0;
--
Gitblit v1.10.0