From c83865bb61ffa3dbdfdceddfc7b46d93859d89d3 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 02 Apr 2018 11:13:10 +0000
Subject: [PATCH] Fixed partial.cmd for new tiny weights

---
 README.md |   15 ++++++++++-----
 1 files changed, 10 insertions(+), 5 deletions(-)

diff --git a/README.md b/README.md
index 343db79..e6b576a 100644
--- a/README.md
+++ b/README.md
@@ -17,9 +17,10 @@
 
 
 
-|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://hsto.org/webt/pw/zd/0j/pwzd0jb9g7znt_dbsyw9qzbnvti.jpeg) https://pjreddie.com/media/files/papers/YOLOv3.pdf |
+|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://hsto.org/webt/pw/zd/0j/pwzd0jb9g7znt_dbsyw9qzbnvti.jpeg) mAP (AP50) https://pjreddie.com/media/files/papers/YOLOv3.pdf |
 |---|---|
 
+* Yolo v3 source chart for the RetinaNet on MS COCO got from Table 1 (e): https://arxiv.org/pdf/1708.02002.pdf
 * Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
 * Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
 
@@ -224,6 +225,7 @@
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 
 ## How to train (to detect your custom objects):
+Training Yolo v3
 
 1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and:
 
@@ -238,7 +240,7 @@
       * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
       * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
 
-  So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=31`.
+  So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=21`.
   
   **(Do not write in the cfg-file: filters=(classes + 5)x3)**
   
@@ -268,15 +270,17 @@
 
 4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
 
-5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+5. You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
+
+It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
 
   Where: 
   * `<object-class>` - integer number of object from `0` to `(classes-1)`
-  * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0 
+  * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from (0.0 to 1.0]
   * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
   * atention: `<x> <y>` - are center of rectangle (are not top-left corner)
 
-  For example for `img1.jpg` you should create `img1.txt` containing:
+  For example for `img1.jpg` you will be created `img1.txt` containing:
 
   ```
   1 0.716797 0.395833 0.216406 0.147222
@@ -365,6 +369,7 @@
 
 * **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
 
+**mAP** is default metric of precision in the PascalVOC competition, **this is the same as AP50** metric in the MS COCO competition.
 In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
 
 ![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)

--
Gitblit v1.10.0