From cb1f33c6ae840e8dc0f43518daf76e6ed01034f0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 08 Dec 2014 19:48:57 +0000
Subject: [PATCH] Fixed race condition in server
---
src/network.c | 149 +++++++++++++++++++++++++++++--------------------
1 files changed, 89 insertions(+), 60 deletions(-)
diff --git a/src/network.c b/src/network.c
index 3761bf9..3a6a184 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,4 +1,5 @@
#include <stdio.h>
+#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
@@ -8,7 +9,9 @@
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
+#include "cost_layer.h"
#include "normalization_layer.h"
+#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@@ -22,54 +25,14 @@
net.outputs = 0;
net.output = 0;
#ifdef GPU
- net.input_cl = 0;
+ net.input_cl = calloc(1, sizeof(cl_mem));
+ net.truth_cl = calloc(1, sizeof(cl_mem));
#endif
return net;
}
-#ifdef GPU
-void forward_network_gpu(network net, cl_mem input_cl, int train)
-{
- int i;
- for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- forward_convolutional_layer_gpu(layer, input_cl);
- input_cl = layer.output_cl;
- }
- /*
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- forward_connected_layer(layer, input, train);
- input = layer.output;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- forward_softmax_layer(layer, input);
- input = layer.output;
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- forward_crop_layer(layer, input);
- input = layer.output;
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- forward_maxpool_layer(layer, input);
- input = layer.output;
- }
- else if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- forward_normalization_layer(layer, input);
- input = layer.output;
- }
- */
- }
-}
-#endif
-
-void forward_network(network net, float *input, int train)
+void forward_network(network net, float *input, float *truth, int train)
{
int i;
for(i = 0; i < net.n; ++i){
@@ -88,6 +51,10 @@
forward_crop_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == COST){
+ cost_layer layer = *(cost_layer *)net.layers[i];
+ forward_cost_layer(layer, input, truth);
+ }
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
@@ -108,6 +75,11 @@
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer(layer, input);
}
+ else if(net.types[i] == FREEWEIGHT){
+ if(!train) continue;
+ freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+ forward_freeweight_layer(layer, input);
+ }
}
}
@@ -148,6 +120,8 @@
return layer.output;
} else if(net.types[i] == DROPOUT){
return get_network_output_layer(net, i-1);
+ } else if(net.types[i] == FREEWEIGHT){
+ return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
@@ -159,7 +133,9 @@
}
float *get_network_output(network net)
{
- return get_network_output_layer(net, net.n-1);
+ int i;
+ for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+ return get_network_output_layer(net, i);
}
float *get_network_delta_layer(network net, int i)
@@ -175,6 +151,8 @@
return layer.delta;
} else if(net.types[i] == DROPOUT){
return get_network_delta_layer(net, i-1);
+ } else if(net.types[i] == FREEWEIGHT){
+ return get_network_delta_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
@@ -182,6 +160,14 @@
return 0;
}
+float get_network_cost(network net)
+{
+ if(net.types[net.n-1] == COST){
+ return ((cost_layer *)net.layers[net.n-1])->output[0];
+ }
+ return 0;
+}
+
float *get_network_delta(network net)
{
return get_network_delta_layer(net, net.n-1);
@@ -212,9 +198,8 @@
return max_index(out, k);
}
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, float *input)
{
- float error = calculate_error_network(net, truth);
int i;
float *prev_input;
float *prev_delta;
@@ -228,11 +213,11 @@
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- backward_convolutional_layer(layer, prev_delta);
+ backward_convolutional_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+ if(i != 0) backward_maxpool_layer(layer, prev_delta);
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -240,21 +225,28 @@
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
- if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+ if(i != 0) backward_softmax_layer(layer, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer(layer, prev_input, prev_delta);
}
+ else if(net.types[i] == COST){
+ cost_layer layer = *(cost_layer *)net.layers[i];
+ backward_cost_layer(layer, prev_input, prev_delta);
+ }
}
- return error;
}
+
+
+
float train_network_datum(network net, float *x, float *y)
{
- forward_network(net, x, 1);
+ forward_network(net, x, y, 1);
//int class = get_predicted_class_network(net);
- float error = backward_network(net, x, y);
+ backward_network(net, x);
+ float error = get_network_cost(net);
update_network(net);
//return (y[class]?1:0);
return error;
@@ -269,7 +261,7 @@
int i;
float sum = 0;
for(i = 0; i < n; ++i){
- get_batch(d, batch, X, y);
+ get_random_batch(d, batch, X, y);
float err = train_network_datum(net, X, y);
sum += err;
}
@@ -277,6 +269,7 @@
free(y);
return (float)sum/(n*batch);
}
+
float train_network_batch(network net, data d, int n)
{
int i,j;
@@ -287,14 +280,32 @@
int index = rand()%d.X.rows;
float *x = d.X.vals[index];
float *y = d.y.vals[index];
- forward_network(net, x, 1);
- sum += backward_network(net, x, y);
+ forward_network(net, x, y, 1);
+ backward_network(net, x);
+ sum += get_network_cost(net);
}
update_network(net);
}
return (float)sum/(n*batch);
}
+float train_network_data_cpu(network net, data d, int n)
+{
+ int batch = net.batch;
+ float *X = calloc(batch*d.X.cols, sizeof(float));
+ float *y = calloc(batch*d.y.cols, sizeof(float));
+
+ int i;
+ float sum = 0;
+ for(i = 0; i < n; ++i){
+ get_next_batch(d, batch, i*batch, X, y);
+ float err = train_network_datum(net, X, y);
+ sum += err;
+ }
+ free(X);
+ free(y);
+ return (float)sum/(n*batch);
+}
void train_network(network net, data d)
{
@@ -329,6 +340,10 @@
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
}
+ else if(net.types[i] == FREEWEIGHT){
+ freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+ return layer.inputs;
+ }
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
@@ -351,10 +366,15 @@
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
- } else if(net.types[i] == DROPOUT){
+ }
+ else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
}
+ else if(net.types[i] == FREEWEIGHT){
+ freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+ return layer.inputs;
+ }
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
@@ -396,7 +416,8 @@
int get_network_output_size(network net)
{
- int i = net.n-1;
+ int i;
+ for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
return get_network_output_size_layer(net, i);
}
@@ -441,7 +462,7 @@
image *prev = 0;
int i;
char buff[256];
- show_image(get_network_image_layer(net, 0), "Crop");
+ //show_image(get_network_image_layer(net, 0), "Crop");
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
if(net.types[i] == CONVOLUTIONAL){
@@ -455,9 +476,17 @@
}
}
+void top_predictions(network net, int k, int *index)
+{
+ int size = get_network_output_size(net);
+ float *out = get_network_output(net);
+ top_k(out, size, k, index);
+}
+
+
float *network_predict(network net, float *input)
{
- forward_network(net, input, 0);
+ forward_network(net, input, 0, 0);
float *out = get_network_output(net);
return out;
}
@@ -492,7 +521,7 @@
int i,j,b;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
- float *X = calloc(net.batch*test.X.rows, sizeof(float));
+ float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
--
Gitblit v1.10.0