From cb65a8bcd4160a0374b39e479f85eabf513dab63 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Sat, 22 Apr 2017 19:11:18 +0000
Subject: [PATCH] Readme.md - fixed link to MSVS 2015 Community
---
src/rnn_layer.c | 170 ++++++++++++++++++++++++++++----------------------------
1 files changed, 86 insertions(+), 84 deletions(-)
diff --git a/src/rnn_layer.c b/src/rnn_layer.c
index 6358285..83fda13 100644
--- a/src/rnn_layer.c
+++ b/src/rnn_layer.c
@@ -10,10 +10,25 @@
#include <stdlib.h>
#include <string.h>
-
-layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize)
+static void increment_layer(layer *l, int steps)
{
- printf("%d %d\n", batch, steps);
+ int num = l->outputs*l->batch*steps;
+ l->output += num;
+ l->delta += num;
+ l->x += num;
+ l->x_norm += num;
+
+#ifdef GPU
+ l->output_gpu += num;
+ l->delta_gpu += num;
+ l->x_gpu += num;
+ l->x_norm_gpu += num;
+#endif
+}
+
+layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log)
+{
+ fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
batch = batch / steps;
layer l = {0};
l.batch = batch;
@@ -22,17 +37,20 @@
l.hidden = hidden;
l.inputs = inputs;
- l.state = calloc(batch*hidden, sizeof(float));
+ l.state = calloc(batch*hidden*(steps+1), sizeof(float));
l.input_layer = malloc(sizeof(layer));
+ fprintf(stderr, "\t\t");
*(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize);
l.input_layer->batch = batch;
l.self_layer = malloc(sizeof(layer));
- *(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, activation, batch_normalize);
+ fprintf(stderr, "\t\t");
+ *(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize);
l.self_layer->batch = batch;
l.output_layer = malloc(sizeof(layer));
+ fprintf(stderr, "\t\t");
*(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize);
l.output_layer->batch = batch;
@@ -40,13 +58,18 @@
l.output = l.output_layer->output;
l.delta = l.output_layer->delta;
- #ifdef GPU
- l.state_gpu = cuda_make_array(l.state, batch*hidden);
+ l.forward = forward_rnn_layer;
+ l.backward = backward_rnn_layer;
+ l.update = update_rnn_layer;
+#ifdef GPU
+ l.forward_gpu = forward_rnn_layer_gpu;
+ l.backward_gpu = backward_rnn_layer_gpu;
+ l.update_gpu = update_rnn_layer_gpu;
+ l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1));
l.output_gpu = l.output_layer->output_gpu;
l.delta_gpu = l.output_layer->delta_gpu;
- #endif
+#endif
- fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
return l;
}
@@ -78,16 +101,23 @@
s.input = l.state;
forward_connected_layer(self_layer, s);
- copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
+ float *old_state = l.state;
+ if(state.train) l.state += l.hidden*l.batch;
+ if(l.shortcut){
+ copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
+ }else{
+ fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+ }
+ axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
s.input = l.state;
forward_connected_layer(output_layer, s);
state.input += l.inputs*l.batch;
- input_layer.output += l.hidden*l.batch;
- self_layer.output += l.hidden*l.batch;
- output_layer.output += l.outputs*l.batch;
+ increment_layer(&input_layer, 1);
+ increment_layer(&self_layer, 1);
+ increment_layer(&output_layer, 1);
}
}
@@ -99,14 +129,12 @@
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
- input_layer.output += l.hidden*l.batch*(l.steps-1);
- input_layer.delta += l.hidden*l.batch*(l.steps-1);
- self_layer.output += l.hidden*l.batch*(l.steps-1);
- self_layer.delta += l.hidden*l.batch*(l.steps-1);
+ increment_layer(&input_layer, l.steps-1);
+ increment_layer(&self_layer, l.steps-1);
+ increment_layer(&output_layer, l.steps-1);
- output_layer.output += l.outputs*l.batch*(l.steps-1);
- output_layer.delta += l.outputs*l.batch*(l.steps-1);
+ l.state += l.hidden*l.batch*l.steps;
for (i = l.steps-1; i >= 0; --i) {
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
@@ -114,13 +142,16 @@
s.input = l.state;
s.delta = self_layer.delta;
backward_connected_layer(output_layer, s);
-
- if(i > 0){
- copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
- axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
- }else{
- fill_cpu(l.hidden * l.batch, 0, l.state, 1);
- }
+
+ l.state -= l.hidden*l.batch;
+ /*
+ if(i > 0){
+ copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
+ axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
+ }else{
+ fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+ }
+ */
s.input = l.state;
s.delta = self_layer.delta - l.hidden*l.batch;
@@ -128,19 +159,15 @@
backward_connected_layer(self_layer, s);
copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
+ if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
s.input = state.input + i*l.inputs*l.batch;
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
else s.delta = 0;
backward_connected_layer(input_layer, s);
- input_layer.output -= l.hidden*l.batch;
- input_layer.delta -= l.hidden*l.batch;
-
- self_layer.output -= l.hidden*l.batch;
- self_layer.delta -= l.hidden*l.batch;
-
- output_layer.output -= l.outputs*l.batch;
- output_layer.delta -= l.outputs*l.batch;
+ increment_layer(&input_layer, -1);
+ increment_layer(&self_layer, -1);
+ increment_layer(&output_layer, -1);
}
}
@@ -188,23 +215,23 @@
s.input = l.state_gpu;
forward_connected_layer_gpu(self_layer, s);
- copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
+ float *old_state = l.state_gpu;
+ if(state.train) l.state_gpu += l.hidden*l.batch;
+ if(l.shortcut){
+ copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
+ }else{
+ fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
+ }
+ axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
+ s.input = l.state_gpu;
forward_connected_layer_gpu(output_layer, s);
state.input += l.inputs*l.batch;
- input_layer.output_gpu += l.hidden*l.batch;
- input_layer.x_gpu += l.hidden*l.batch;
- input_layer.x_norm_gpu += l.hidden*l.batch;
-
- self_layer.output_gpu += l.hidden*l.batch;
- self_layer.x_gpu += l.hidden*l.batch;
- self_layer.x_norm_gpu += l.hidden*l.batch;
-
- output_layer.output_gpu += l.outputs*l.batch;
- output_layer.x_gpu += l.outputs*l.batch;
- output_layer.x_norm_gpu += l.outputs*l.batch;
+ increment_layer(&input_layer, 1);
+ increment_layer(&self_layer, 1);
+ increment_layer(&output_layer, 1);
}
}
@@ -216,60 +243,35 @@
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
- input_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
- input_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
- input_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
- input_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
-
- self_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
- self_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
- self_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
- self_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
-
- output_layer.output_gpu += l.outputs*l.batch*(l.steps-1);
- output_layer.delta_gpu += l.outputs*l.batch*(l.steps-1);
- output_layer.x_gpu += l.outputs*l.batch*(l.steps-1);
- output_layer.x_norm_gpu += l.outputs*l.batch*(l.steps-1);
+ increment_layer(&input_layer, l.steps - 1);
+ increment_layer(&self_layer, l.steps - 1);
+ increment_layer(&output_layer, l.steps - 1);
+ l.state_gpu += l.hidden*l.batch*l.steps;
for (i = l.steps-1; i >= 0; --i) {
- copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
- axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
s.input = l.state_gpu;
s.delta = self_layer.delta_gpu;
backward_connected_layer_gpu(output_layer, s);
-
- if(i > 0){
- copy_ongpu(l.hidden * l.batch, input_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
- axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
- }else{
- fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
- }
+
+ l.state_gpu -= l.hidden*l.batch;
+
+ copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
s.input = l.state_gpu;
s.delta = self_layer.delta_gpu - l.hidden*l.batch;
if (i == 0) s.delta = 0;
backward_connected_layer_gpu(self_layer, s);
- copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
+ //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
+ if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
s.input = state.input + i*l.inputs*l.batch;
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
else s.delta = 0;
backward_connected_layer_gpu(input_layer, s);
- input_layer.output_gpu -= l.hidden*l.batch;
- input_layer.delta_gpu -= l.hidden*l.batch;
- input_layer.x_gpu -= l.hidden*l.batch;
- input_layer.x_norm_gpu -= l.hidden*l.batch;
-
- self_layer.output_gpu -= l.hidden*l.batch;
- self_layer.delta_gpu -= l.hidden*l.batch;
- self_layer.x_gpu -= l.hidden*l.batch;
- self_layer.x_norm_gpu -= l.hidden*l.batch;
-
- output_layer.output_gpu -= l.outputs*l.batch;
- output_layer.delta_gpu -= l.outputs*l.batch;
- output_layer.x_gpu -= l.outputs*l.batch;
- output_layer.x_norm_gpu -= l.outputs*l.batch;
+ increment_layer(&input_layer, -1);
+ increment_layer(&self_layer, -1);
+ increment_layer(&output_layer, -1);
}
}
#endif
--
Gitblit v1.10.0