From cc06817efa24f20811ef6b32143c6700a91c5f2a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Apr 2014 08:00:27 +0000
Subject: [PATCH] Attempt at visualizing ImageNet Features

---
 src/connected_layer.c |   49 +++++++++++++++++++++++++++++++++++++------------
 1 files changed, 37 insertions(+), 12 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 5f6631c..16a39be 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -7,35 +7,59 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
 {
     fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
     layer->inputs = inputs;
     layer->outputs = outputs;
+    layer->batch=batch;
 
-    layer->output = calloc(outputs, sizeof(float*));
-    layer->delta = calloc(outputs, sizeof(float*));
+    layer->output = calloc(batch*outputs, sizeof(float*));
+    layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
+    layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
     layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
     layer->weights = calloc(inputs*outputs, sizeof(float));
-    float scale = 2./inputs;
+    float scale = 1./inputs;
     for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = rand_normal()*scale;
+        layer->weights[i] = scale*(rand_uniform());
 
     layer->bias_updates = calloc(outputs, sizeof(float));
+    layer->bias_adapt = calloc(outputs, sizeof(float));
     layer->bias_momentum = calloc(outputs, sizeof(float));
     layer->biases = calloc(outputs, sizeof(float));
     for(i = 0; i < outputs; ++i)
         //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = 0;
+        layer->biases[i] = 1;
 
     layer->activation = activation;
     return layer;
 }
 
+/*
+void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
+{
+    int i;
+    for(i = 0; i < layer.outputs; ++i){
+        float delta = layer.bias_updates[i];
+        layer.bias_adapt[i] += delta*delta;
+        layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
+        layer.biases[i] += layer.bias_momentum[i];
+    }
+    for(i = 0; i < layer.outputs*layer.inputs; ++i){
+        float delta = layer.weight_updates[i];
+        layer.weight_adapt[i] += delta*delta;
+        layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
+        layer.weights[i] += layer.weight_momentum[i];
+    }
+    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
+    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
+}
+*/
+
 void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
 {
     int i;
@@ -55,27 +79,28 @@
 {
     int i;
     memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
-    int m = 1;
+    int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
     float *a = input;
     float *b = layer.weights;
     float *c = layer.output;
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    for(i = 0; i < layer.outputs; ++i){
+    for(i = 0; i < layer.outputs*layer.batch; ++i){
         layer.output[i] = activate(layer.output[i], layer.activation);
     }
+    //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
 }
 
 void learn_connected_layer(connected_layer layer, float *input)
 {
     int i;
-    for(i = 0; i < layer.outputs; ++i){
+    for(i = 0; i < layer.outputs*layer.batch; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
-        layer.bias_updates[i] += layer.delta[i];
+        layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
     }
     int m = layer.inputs;
-    int k = 1;
+    int k = layer.batch;
     int n = layer.outputs;
     float *a = input;
     float *b = layer.delta;
@@ -89,7 +114,7 @@
 
     int m = layer.inputs;
     int k = layer.outputs;
-    int n = 1;
+    int n = layer.batch;
 
     float *a = layer.weights;
     float *b = layer.delta;

--
Gitblit v1.10.0