From cc06817efa24f20811ef6b32143c6700a91c5f2a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Apr 2014 08:00:27 +0000
Subject: [PATCH] Attempt at visualizing ImageNet Features

---
 src/network.c |  140 ++++++++++++++++++++++++++++++++++------------
 1 files changed, 104 insertions(+), 36 deletions(-)

diff --git a/src/network.c b/src/network.c
index f7abf58..edae3c7 100644
--- a/src/network.c
+++ b/src/network.c
@@ -10,10 +10,11 @@
 #include "maxpool_layer.h"
 #include "softmax_layer.h"
 
-network make_network(int n)
+network make_network(int n, int batch)
 {
     network net;
     net.n = n;
+    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
@@ -21,18 +22,19 @@
     return net;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
 {
     int i;
-    fprintf(fp, "[convolutional]\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "filters=%d\n"
+    fprintf(fp, "[convolutional]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+                            "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "filters=%d\n"
                 "size=%d\n"
                 "stride=%d\n"
                 "activation=%s\n",
-                l->h, l->w, l->c,
                 l->n, l->size, l->stride,
                 get_activation_string(l->activation));
     fprintf(fp, "data=");
@@ -40,14 +42,14 @@
     for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
     fprintf(fp, "\n\n");
 }
-void print_connected_cfg(FILE *fp, connected_layer *l)
+void print_connected_cfg(FILE *fp, connected_layer *l, int first)
 {
     int i;
-    fprintf(fp, "[connected]\n"
-                "input=%d\n"
-                "output=%d\n"
+    fprintf(fp, "[connected]\n");
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "output=%d\n"
                 "activation=%s\n",
-                l->inputs, l->outputs,
+                l->outputs,
                 get_activation_string(l->activation));
     fprintf(fp, "data=");
     for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
@@ -55,22 +57,22 @@
     fprintf(fp, "\n\n");
 }
 
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l)
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
 {
-    fprintf(fp, "[maxpool]\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "stride=%d\n\n",
-                l->h, l->w, l->c,
-                l->stride);
+    fprintf(fp, "[maxpool]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+                            "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "stride=%d\n\n", l->stride);
 }
 
-void print_softmax_cfg(FILE *fp, softmax_layer *l)
+void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
 {
-    fprintf(fp, "[softmax]\n"
-                "input=%d\n\n",
-                l->inputs);
+    fprintf(fp, "[softmax]\n");
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
 }
 
 void save_network(network net, char *filename)
@@ -81,13 +83,13 @@
     for(i = 0; i < net.n; ++i)
     {
         if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]);
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
         else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i]);
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
         else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]);
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
         else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i]);
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
     }
     fclose(fp);
 }
@@ -192,11 +194,11 @@
     float *out = get_network_output(net);
     int i, k = get_network_output_size(net);
     for(i = 0; i < k; ++i){
-        printf("%f, ", out[i]);
+        //printf("%f, ", out[i]);
         delta[i] = truth[i] - out[i];
         sum += delta[i]*delta[i];
     }
-    printf("\n");
+    //printf("\n");
     return sum;
 }
 
@@ -259,19 +261,26 @@
     int i;
     float error = 0;
     int correct = 0;
+    int pos = 0;
     for(i = 0; i < n; ++i){
         int index = rand()%d.X.rows;
-        error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
         float *y = d.y.vals[index];
         int class = get_predicted_class_network(net);
         correct += (y[class]?1:0);
+        if(y[1]){
+            error += err;
+            ++pos;
+        }
+        
+
         //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
         //if((i+1)%10 == 0){
         //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
         //}
     }
-    printf("Accuracy: %f\n",(float) correct/n);
-    return error/n;
+    //printf("Accuracy: %f\n",(float) correct/n);
+    return error/pos;
 }
 float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
 {
@@ -305,7 +314,7 @@
     }
     visualize_network(net);
     cvWaitKey(100);
-    printf("Accuracy: %f\n", (float)correct/d.X.rows);
+    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
 int get_network_output_size_layer(network net, int i)
@@ -331,6 +340,63 @@
     return 0;
 }
 
+/*
+int resize_network(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+    }
+    return 0;
+}
+*/
+
+int resize_network(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            resize_convolutional_layer(layer, h, w, c);
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            resize_maxpool_layer(layer, h, w, c);
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else{
+            error("Cannot resize this type of layer");
+        }
+    }
+    return 0;
+}
+
 int get_network_output_size(network net)
 {
     int i = net.n-1;
@@ -362,13 +428,14 @@
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_layer(layer, buff);
+            prev = visualize_convolutional_layer(layer, buff, prev);
         }
     } 
 }
@@ -440,3 +507,4 @@
     return acc;
 }
 
+

--
Gitblit v1.10.0