From cc06817efa24f20811ef6b32143c6700a91c5f2a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Apr 2014 08:00:27 +0000
Subject: [PATCH] Attempt at visualizing ImageNet Features

---
 src/network.c |  473 +++++++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 409 insertions(+), 64 deletions(-)

diff --git a/src/network.c b/src/network.c
index 53184d9..edae3c7 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,165 +1,510 @@
+#include <stdio.h>
 #include "network.h"
 #include "image.h"
+#include "data.h"
+#include "utils.h"
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+//#include "old_conv.h"
 #include "maxpool_layer.h"
+#include "softmax_layer.h"
 
-network make_network(int n)
+network make_network(int n, int batch)
 {
     network net;
     net.n = n;
+    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    net.outputs = 0;
+    net.output = 0;
     return net;
 }
 
-void run_network(image input, network net)
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
 {
     int i;
-    double *input_d = input.data;
+    fprintf(fp, "[convolutional]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+                            "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "filters=%d\n"
+                "size=%d\n"
+                "stride=%d\n"
+                "activation=%s\n",
+                l->n, l->size, l->stride,
+                get_activation_string(l->activation));
+    fprintf(fp, "data=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+void print_connected_cfg(FILE *fp, connected_layer *l, int first)
+{
+    int i;
+    fprintf(fp, "[connected]\n");
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "output=%d\n"
+                "activation=%s\n",
+                l->outputs,
+                get_activation_string(l->activation));
+    fprintf(fp, "data=");
+    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
+{
+    fprintf(fp, "[maxpool]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+                            "height=%d\n"
+                            "width=%d\n"
+                            "channels=%d\n",
+                            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "stride=%d\n\n", l->stride);
+}
+
+void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
+{
+    fprintf(fp, "[softmax]\n");
+    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+void save_network(network net, char *filename)
+{
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+    int i;
+    for(i = 0; i < net.n; ++i)
+    {
+        if(net.types[i] == CONVOLUTIONAL)
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
+        else if(net.types[i] == CONNECTED)
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
+        else if(net.types[i] == MAXPOOL)
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
+        else if(net.types[i] == SOFTMAX)
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
+    }
+    fclose(fp);
+}
+
+void forward_network(network net, float *input)
+{
+    int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            run_convolutional_layer(input, layer);
+            forward_convolutional_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            run_connected_layer(input_d, layer);
-            input_d = layer.output;
+            forward_connected_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            run_maxpool_layer(input, layer);
+            forward_maxpool_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
     }
 }
 
-void update_network(network net, double step)
+void update_network(network net, float step, float momentum, float decay)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step);
+            update_convolutional_layer(layer, step, momentum, decay);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step);
-        }
-    }
-}
-
-void learn_network(image input, network net)
-{
-    int i;
-    image prev;
-    double *prev_p;
-    for(i = net.n-1; i >= 0; --i){
-        if(i == 0){
-            prev = input;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i-1];
-            prev = layer.output;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i-1];
-            prev = layer.output;
-            prev_p = prev.data;
-        } else if(net.types[i-1] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i-1];
-            prev_p = layer.output;
-        }
-
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(prev, layer);
-        }
-        else if(net.types[i] == MAXPOOL){
+        else if(net.types[i] == SOFTMAX){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(prev_p, layer);
+            update_connected_layer(layer, step, momentum, decay);
         }
     }
 }
 
-
-double *get_network_output_layer(network net, int i)
+float *get_network_output_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output.data;
-    }
-    else if(net.types[i] == MAXPOOL){
+        return layer.output;
+    } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output.data;
-    }
-    else if(net.types[i] == CONNECTED){
+        return layer.output;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.output;
+    } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
     }
     return 0;
 }
+float *get_network_output(network net)
+{
+    return get_network_output_layer(net, net.n-1);
+}
+
+float *get_network_delta_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.delta;
+    }
+    return 0;
+}
+
+float *get_network_delta(network net)
+{
+    return get_network_delta_layer(net, net.n-1);
+}
+
+float calculate_error_network(network net, float *truth)
+{
+    float sum = 0;
+    float *delta = get_network_delta(net);
+    float *out = get_network_output(net);
+    int i, k = get_network_output_size(net);
+    for(i = 0; i < k; ++i){
+        //printf("%f, ", out[i]);
+        delta[i] = truth[i] - out[i];
+        sum += delta[i]*delta[i];
+    }
+    //printf("\n");
+    return sum;
+}
+
+int get_predicted_class_network(network net)
+{
+    float *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
+}
+
+float backward_network(network net, float *input, float *truth)
+{
+    float error = calculate_error_network(net, truth);
+    int i;
+    float *prev_input;
+    float *prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_layer(net, i-1);
+            prev_delta = get_network_delta_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            learn_convolutional_layer(layer);
+            //learn_convolutional_layer(layer);
+            if(i != 0) backward_convolutional_layer(layer, prev_delta);
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            learn_connected_layer(layer, prev_input);
+            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+        }
+    }
+    return error;
+}
+
+float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
+{
+    forward_network(net, x);
+    //int class = get_predicted_class_network(net);
+    float error = backward_network(net, x, y);
+    update_network(net, step, momentum, decay);
+    //return (y[class]?1:0);
+    return error;
+}
+
+float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
+{
+    int i;
+    float error = 0;
+    int correct = 0;
+    int pos = 0;
+    for(i = 0; i < n; ++i){
+        int index = rand()%d.X.rows;
+        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        float *y = d.y.vals[index];
+        int class = get_predicted_class_network(net);
+        correct += (y[class]?1:0);
+        if(y[1]){
+            error += err;
+            ++pos;
+        }
+        
+
+        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
+        //if((i+1)%10 == 0){
+        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
+        //}
+    }
+    //printf("Accuracy: %f\n",(float) correct/n);
+    return error/pos;
+}
+float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
+{
+    int i;
+    int correct = 0;
+    for(i = 0; i < n; ++i){
+        int index = rand()%d.X.rows;
+        float *x = d.X.vals[index];
+        float *y = d.y.vals[index];
+        forward_network(net, x);
+        int class = get_predicted_class_network(net);
+        backward_network(net, x, y);
+        correct += (y[class]?1:0);
+    }
+    update_network(net, step, momentum, decay);
+    return (float)correct/n;
+
+}
+
+
+void train_network(network net, data d, float step, float momentum, float decay)
+{
+    int i;
+    int correct = 0;
+    for(i = 0; i < d.X.rows; ++i){
+        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
+        if(i%100 == 0){
+            visualize_network(net);
+            cvWaitKey(10);
+        }
+    }
+    visualize_network(net);
+    cvWaitKey(100);
+    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
+}
 
 int get_network_output_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output.h*layer.output.w*layer.output.c;
+        image output = get_convolutional_image(layer);
+        return output.h*output.w*output.c;
     }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output.h*layer.output.w*layer.output.c;
+        image output = get_maxpool_image(layer);
+        return output.h*output.w*output.c;
     }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
     }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
     return 0;
 }
 
-double *get_network_output(network net)
+/*
+int resize_network(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            layer->h = h;
+            layer->w = w;
+            layer->c = c;
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+    }
+    return 0;
+}
+*/
+
+int resize_network(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            resize_convolutional_layer(layer, h, w, c);
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            resize_maxpool_layer(layer, h, w, c);
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }
+        else{
+            error("Cannot resize this type of layer");
+        }
+    }
+    return 0;
+}
+
+int get_network_output_size(network net)
 {
     int i = net.n-1;
-    return get_network_output_layer(net, i);
+    return get_network_output_size_layer(net, i);
 }
 
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
+        return get_convolutional_image(layer);
     }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
+        return get_maxpool_image(layer);
     }
-    return make_image(0,0,0);
+    return make_empty_image(0,0,0);
 }
 
 image get_network_image(network net)
 {
     int i;
     for(i = net.n-1; i >= 0; --i){
+        image m = get_network_image_layer(net, i);
+        if(m.h != 0) return m;
+    }
+    return make_empty_image(0,0,0);
+}
+
+void visualize_network(network net)
+{
+    image *prev = 0;
+    int i;
+    char buff[256];
+    for(i = 0; i < net.n; ++i){
+        sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            return layer.output;
+            prev = visualize_convolutional_layer(layer, buff, prev);
+        }
+    } 
+}
+
+float *network_predict(network net, float *input)
+{
+    forward_network(net, input);
+    float *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    for(i = 0; i < test.X.rows; ++i){
+        float *out = network_predict(net, test.X.vals[i]);
+        for(j = 0; j < k; ++j){
+            pred.vals[i][j] = out[j];
+        }
+    }
+    return pred;   
+}
+
+void print_network(network net)
+{
+    int i,j;
+    for(i = 0; i < net.n; ++i){
+        float *output = 0;
+        int n = 0;
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_convolutional_image(layer);
+            n = m.h*m.w*m.c;
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            return layer.output;
+            output = layer.output;
+            image m = get_maxpool_image(layer);
+            n = m.h*m.w*m.c;
         }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.outputs;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            output = layer.output;
+            n = layer.inputs;
+        }
+        float mean = mean_array(output, n);
+        float vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        if(n > 100) n = 100;
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
     }
-    return make_image(1,1,1);
 }
 
+float network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    float acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
+}
+
+

--
Gitblit v1.10.0