From cc06817efa24f20811ef6b32143c6700a91c5f2a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Apr 2014 08:00:27 +0000
Subject: [PATCH] Attempt at visualizing ImageNet Features

---
 src/tests.c |  577 ++++++++++++++++++++++++++++++++++++++++++---------------
 1 files changed, 426 insertions(+), 151 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index c459a36..5d9136d 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -1,4 +1,5 @@
 #include "connected_layer.h"
+//#include "old_conv.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 #include "network.h"
@@ -13,9 +14,12 @@
 #include <stdlib.h>
 #include <stdio.h>
 
+#define _GNU_SOURCE
+#include <fenv.h>
+
 void test_convolve()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     image kernel = make_random_image(3,3,dog.c);
     image edge = make_image(dog.h, dog.w, 1);
@@ -25,23 +29,23 @@
         convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
 }
 
 void test_convolve_matrix()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     
     int size = 11;
-    int stride = 1;
+    int stride = 4;
     int n = 40;
-    double *filters = make_random_image(size, size, dog.c*n).data;
+    float *filters = make_random_image(size, size, dog.c*n).data;
 
     int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
     int mh = (size*size*dog.c);
-    double *matrix = calloc(mh*mw, sizeof(double));
+    float *matrix = calloc(mh*mw, sizeof(float));
 
     image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
 
@@ -53,40 +57,17 @@
         gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
     cvWaitKey(0);
 }
 
 void test_color()
 {
-    image dog = load_image("test_color.png");
+    image dog = load_image("test_color.png", 300, 400);
     show_image_layers(dog, "Test Color");
 }
 
-void test_convolutional_layer()
-{
-    srand(0);
-    image dog = load_image("dog.jpg");
-    int i;
-    int n = 3;
-    int stride = 1;
-    int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
-    char buff[256];
-    for(i = 0; i < n; ++i) {
-        sprintf(buff, "Kernel %d", i);
-        show_image(layer.kernels[i], buff);
-    }
-    forward_convolutional_layer(layer, dog.data);
-    
-    image output = get_convolutional_image(layer);
-    maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
-    forward_maxpool_layer(mlayer, layer.output);
-
-    show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
-}
-
 void verify_convolutional_layer()
 {
     srand(0);
@@ -94,11 +75,11 @@
     int n = 1;
     int stride = 1;
     int size = 3;
-    double eps = .00000001;
+    float eps = .00000001;
     image test = make_random_image(5,5, 1);
-    convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
+    convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
     image out = get_convolutional_image(layer);
-    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
+    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
     
     forward_convolutional_layer(layer, test.data);
     image base = copy_image(out);
@@ -112,19 +93,19 @@
         jacobian[i] = partial.data;
         test.data[i] -= eps;
     }
-    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
+    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
     image in_delta = make_image(test.h, test.w, test.c);
     image out_delta = get_convolutional_delta(layer);
     for(i = 0; i < out.h*out.w*out.c; ++i){
         out_delta.data[i] = 1;
-        backward_convolutional_layer(layer, test.data, in_delta.data);
+        backward_convolutional_layer(layer, in_delta.data);
         image partial = copy_image(in_delta);
         jacobian2[i] = partial.data;
         out_delta.data[i] = 0;
     }
     int j;
-    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
-    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
     for(i = 0; i < test.h*test.w*test.c; ++i){
         for(j =0 ; j < out.h*out.w*out.c; ++j){
             j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
@@ -134,23 +115,22 @@
     }
 
 
-    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
     printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
     show_image(mj1, "forward jacobian");
     show_image(mj2, "backward jacobian");
-    
 }
 
 void test_load()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     show_image(dog, "Test Load");
     show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     int n = 3;
     image up = make_image(n*dog.h, n*dog.w, dog.c);
     upsample_image(dog, n, up);
@@ -161,13 +141,13 @@
 void test_rotate()
 {
     int i;
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     clock_t start = clock(), end;
     for(i = 0; i < 1001; ++i){
         rotate_image(dog);
     }
     end = clock();
-    printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image(dog, "Test Rotate");
 
     image random = make_random_image(3,3,3);
@@ -181,18 +161,18 @@
 void test_parser()
 {
     network net = parse_network_cfg("test_parser.cfg");
-    double input[1];
+    float input[1];
     int count = 0;
         
-    double avgerr = 0;
+    float avgerr = 0;
     while(++count < 100000000){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
+        float v = ((float)rand()/RAND_MAX);
+        float truth = v*v;
         input[0] = v;
         forward_network(net, input);
-        double *out = get_network_output(net);
-        double *delta = get_network_delta(net);
-        double err = pow((out[0]-truth),2.);
+        float *out = get_network_output(net);
+        float *delta = get_network_delta(net);
+        float err = pow((out[0]-truth),2.);
         avgerr = .99 * avgerr + .01 * err;
         if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
         delta[0] = truth - out[0];
@@ -204,24 +184,118 @@
 void test_data()
 {
     char *labels[] = {"cat","dog"};
-    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
+    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
     free_data(train);
 }
 
-void test_full()
+void train_full()
 {
-    network net = parse_network_cfg("full.cfg");
-    srand(0);
+    network net = parse_network_cfg("cfg/imagenet.cfg");
+    srand(2222222);
     int i = 0;
     char *labels[] = {"cat","dog"};
-    double lr = .00001;
-    double momentum = .9;
-    double decay = 0.01;
-    while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
-        train_network(net, train, lr, momentum, decay);
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(1){
+        i += 1000;
+        data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
+        //image im = float_to_image(256, 256, 3,train.X.vals[0]);
+        //visualize_network(net);
+        //cvWaitKey(100);
+        //show_image(im, "input");
+        //cvWaitKey(100);
+        //scale_data_rows(train, 1./255.);
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
         free_data(train);
-        printf("Round %d\n", i);
+        if(i%10000==0){
+            char buff[256];
+            sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+            save_network(net, buff);
+        }
+        //lr *= .99;
+    }
+}
+
+void test_visualize()
+{
+    network net = parse_network_cfg("cfg/imagenet.cfg");
+    srand(2222222);
+    visualize_network(net);
+    cvWaitKey(0);
+}
+void test_full()
+{
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
+}
+
+void test_cifar10()
+{
+    data test = load_cifar10_data("images/cifar10/test_batch.bin");
+    scale_data_rows(test, 1./255);
+    network net = parse_network_cfg("cfg/cifar10.cfg");
+    int count = 0;
+    float lr = .000005;
+    float momentum = .99;
+    float decay = 0.001;
+    decay = 0;
+    int batch = 10000;
+    while(++count <= 10000){
+        char buff[256];
+        sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1);
+        data train = load_cifar10_data(buff);
+        scale_data_rows(train, 1./255);
+        train_network_sgd(net, train, batch, lr, momentum, decay);
+        //printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+
+        float test_acc = network_accuracy(net, test);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc);
+        free_data(train);
+    }
+
+}
+
+void test_vince()
+{
+    network net = parse_network_cfg("cfg/vince.cfg");
+    data train = load_categorical_data_csv("images/vince.txt", 144, 2);
+    normalize_data_rows(train);
+
+    int count = 0;
+    float lr = .00005;
+    float momentum = .9;
+    float decay = 0.0001;
+    decay = 0;
+    int batch = 10000;
+    while(++count <= 10000){
+        float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
     }
 }
 
@@ -229,33 +303,36 @@
 {
     srand(444444);
     srand(888888);
-    network net = parse_network_cfg("nist_basic.cfg");
+    network net = parse_network_cfg("cfg/nist_basic.cfg");
     data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
     normalize_data_rows(train);
     normalize_data_rows(test);
     //randomize_data(train);
     int count = 0;
-    double lr = .0005;
-    double momentum = .9;
-    double decay = 0.01;
-    clock_t start = clock(), end;
-    while(++count <= 1000){
-        double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
-        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
-        end = clock();
-        printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-        start=end;
-        //visualize_network(net);
-        //cvWaitKey(100);
-        //lr /= 2; 
-        if(count%5 == 0 && 0){
-            double train_acc = network_accuracy(net, train);
-            fprintf(stderr, "\nTRAIN: %f\n", train_acc);
-            double test_acc = network_accuracy(net, test);
-            fprintf(stderr, "TEST: %f\n\n", test_acc);
-            printf("%d, %f, %f\n", count, train_acc, test_acc);
+    float lr = .00005;
+    float momentum = .9;
+    float decay = 0.0001;
+    decay = 0;
+    //clock_t start = clock(), end;
+    int batch = 10000;
+    while(++count <= 10000){
+        float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+        //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
+        //end = clock();
+        //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+        //start=end;
+        /*
+           if(count%5 == 0){
+           float train_acc = network_accuracy(net, train);
+           fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+           float test_acc = network_accuracy(net, test);
+           fprintf(stderr, "TEST: %f\n\n", test_acc);
+           printf("%d, %f, %f\n", count, train_acc, test_acc);
+        //lr *= .5;
         }
+         */
     }
 }
 
@@ -268,70 +345,52 @@
     data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
     normalize_data_rows(test);
     data train = d;
-    /*
-       data *split = split_data(d, 1, 10);
-       data train = split[0];
-       data test = split[1];
-     */
+    //   data *split = split_data(d, 1, 10);
+    //   data train = split[0];
+    //   data test = split[1];
     matrix prediction = make_matrix(test.y.rows, test.y.cols);
     int n = 30;
     for(i = 0; i < n; ++i){
         int count = 0;
-        double lr = .0005;
-        double momentum = .9;
-        double decay = .01;
+        float lr = .0005;
+        float momentum = .9;
+        float decay = .01;
         network net = parse_network_cfg("nist.cfg");
         while(++count <= 15){
-            double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+            float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
             printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
             lr /= 2; 
         }
         matrix partial = network_predict_data(net, test);
-        double acc = matrix_accuracy(test.y, partial);
+        float acc = matrix_accuracy(test.y, partial);
         printf("Model Accuracy: %lf\n", acc);
         matrix_add_matrix(partial, prediction);
         acc = matrix_accuracy(test.y, prediction);
         printf("Current Ensemble Accuracy: %lf\n", acc);
         free_matrix(partial);
     }
-    double acc = matrix_accuracy(test.y, prediction);
+    float acc = matrix_accuracy(test.y, prediction);
     printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
-void test_kernel_update()
-{
-    srand(0);
-    double delta[] = {.1};
-    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
-    double kernel[] = {1,2,3,4,5,6,7,8,9};
-    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR);
-    layer.kernels[0].data = kernel;
-    layer.delta = delta;
-    learn_convolutional_layer(layer, input);
-    print_image(layer.kernels[0]);
-    print_image(get_convolutional_delta(layer));
-    print_image(layer.kernel_updates[0]);
-
-}
-
 void test_random_classify()
 {
     network net = parse_network_cfg("connected.cfg");
     matrix m = csv_to_matrix("train.csv");
     //matrix ho = hold_out_matrix(&m, 2500);
-    double *truth = pop_column(&m, 0);
-    //double *ho_truth = pop_column(&ho, 0);
+    float *truth = pop_column(&m, 0);
+    //float *ho_truth = pop_column(&ho, 0);
     int i;
     clock_t start = clock(), end;
     int count = 0;
     while(++count <= 300){
         for(i = 0; i < m.rows; ++i){
             int index = rand()%m.rows;
-            //image p = double_to_image(1690,1,1,m.vals[index]);
+            //image p = float_to_image(1690,1,1,m.vals[index]);
             //normalize_image(p);
             forward_network(net, m.vals[index]);
-            double *out = get_network_output(net);
-            double *delta = get_network_delta(net);
+            float *out = get_network_output(net);
+            float *delta = get_network_delta(net);
             //printf("%f\n", out[0]);
             delta[0] = truth[index] - out[0];
             // printf("%f\n", delta[0]);
@@ -339,8 +398,8 @@
             //backward_network(net, m.vals[index], );
             update_network(net, .00001, 0,0);
         }
-        //double test_acc = error_network(net, m, truth);
-        //double valid_acc = error_network(net, ho, ho_truth);
+        //float test_acc = error_network(net, m, truth);
+        //float valid_acc = error_network(net, ho, ho_truth);
         //printf("%f, %f\n", test_acc, valid_acc);
         //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
         //if(valid_acc > .70) break;
@@ -351,12 +410,12 @@
     truth = pop_column(&test, 0);
     for(i = 0; i < test.rows; ++i){
         forward_network(net, test.vals[i]);
-        double *out = get_network_output(net);
+        float *out = get_network_output(net);
         if(fabs(out[0]) < .5) fprintf(fp, "0\n");
         else fprintf(fp, "1\n");
     }
     fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
 }
 
 void test_split()
@@ -366,30 +425,6 @@
     printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
-double *random_matrix(int rows, int cols)
-{
-    int i, j;
-    double *m = calloc(rows*cols, sizeof(double));
-    for(i = 0; i < rows; ++i){
-        for(j = 0; j < cols; ++j){
-            m[i*cols+j] = (double)rand()/RAND_MAX;
-        }
-    }
-    return m;
-}
-
-void test_blas()
-{
-    int m = 6025, n = 20, k = 11*11*3;
-    double *a = random_matrix(m,k);
-    double *b = random_matrix(k,n);
-    double *c = random_matrix(m,n);
-    int i;
-    for(i = 0; i<1000; ++i){
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    }
-}
-
 void test_im2row()
 {
     int h = 20;
@@ -402,24 +437,264 @@
     int mw = ((h-size)/stride+1)*((w-size)/stride+1);
     int mh = (size*size*c);
     int msize = mc*mw*mh;
-    double *matrix = calloc(msize, sizeof(double));
+    float *matrix = calloc(msize, sizeof(float));
     int i;
     for(i = 0; i < 1000; ++i){
-    im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
-    image render = double_to_image(mh, mw, mc, matrix);
+        im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+        //image render = float_to_image(mh, mw, mc, matrix);
     }
 }
 
-int main()
+void train_VOC()
 {
+    network net = parse_network_cfg("cfg/voc_start.cfg");
+    srand(2222222);
+    int i = 20;
+    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(i++ < 1000 || 1){
+        data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
+
+        image im = float_to_image(300, 400, 3,train.X.vals[0]);
+        show_image(im, "input");
+        visualize_network(net);
+        cvWaitKey(100);
+
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
+            save_network(net, buff);
+        }
+        //lr *= .99;
+    }
+}
+
+int voc_size(int x)
+{
+    x = x-1+3;
+    x = x-1+3;
+    x = x-1+3;
+    x = (x-1)*2+1;
+    x = x-1+5;
+    x = (x-1)*2+1;
+    x = (x-1)*4+11;
+    return x;
+}
+
+image features_output_size(network net, IplImage *src, int outh, int outw)
+{
+    int h = voc_size(outh);
+    int w = voc_size(outw);
+    fprintf(stderr, "%d %d\n", h, w);
+
+    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+    cvResize(src, sized, CV_INTER_LINEAR);
+    image im = ipl_to_image(sized);
+    resize_network(net, im.h, im.w, im.c);
+    forward_network(net, im.data);
+    image out = get_network_image_layer(net, 6);
+    free_image(im);
+    cvReleaseImage(&sized);
+    return copy_image(out);
+}
+
+void features_VOC_image_size(char *image_path, int h, int w)
+{
+    int j;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    fprintf(stderr, "%s\n", image_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    image out = features_output_size(net, src, h, w);
+    for(j = 0; j < out.c*out.h*out.w; ++j){
+        if(j != 0) printf(",");
+        printf("%g", out.data[j]);
+    }
+    printf("\n");
+    free_image(out);
+    cvReleaseImage(&src);
+}
+
+void visualize_imagenet_features(char *filename)
+{
+    int i,j,k;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    list *plist = get_paths(filename);
+    node *n = plist->front;
+    int h = voc_size(1), w = voc_size(1);
+    int num = get_network_image(net).c;
+    image *vizs = calloc(num, sizeof(image));
+    for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
+    while(n){
+        char *image_path = (char *)n->val;
+        image im = load_image(image_path, 0, 0);
+        printf("Processing %dx%d image\n", im.h, im.w);
+        resize_network(net, im.h, im.w, im.c);
+        forward_network(net, im.data);
+        image out = get_network_image(net);
+
+        int dh = (im.h - h)/h;
+        int dw = (im.w - w)/w;
+        for(i = 0; i < out.h; ++i){
+            for(j = 0; j < out.w; ++j){
+                image sub = get_sub_image(im, dh*i, dw*j, h, w);
+                for(k = 0; k < out.c; ++k){
+                    float val = get_pixel(out, i, j, k);
+                    //printf("%f, ", val);
+                    image sub_c = copy_image(sub);
+                    scale_image(sub_c, val);
+                    add_into_image(sub_c, vizs[k], 0, 0);
+                    free_image(sub_c);
+                }
+                free_image(sub);
+            }
+        }
+        //printf("\n");
+        show_images(vizs, 10, "IMAGENET Visualization");
+        cvWaitKey(1000);
+        n = n->next;
+    }
+    cvWaitKey(0);
+}
+
+void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
+{
+    int i,j;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    char image_path[1024];
+    sprintf(image_path, "%s/%s",image_dir, image_file);
+    char out_path[1024];
+    sprintf(out_path, "%s/%s.txt",out_dir, image_file);
+    printf("%s\n", image_file);
+    FILE *fp = fopen(out_path, "w");
+    if(fp == 0) file_error(out_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    int w = src->width;
+    int h = src->height;
+    int sbin = 8;
+    int interval = 4;
+    double scale = pow(2., 1./interval);
+    int m = (w<h)?w:h;
+    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+    if(max_scale < interval) error("max_scale must be >= interval");
+    image *ims = calloc(max_scale+interval, sizeof(image));
+
+    for(i = 0; i < interval; ++i){
+        double factor = 1./pow(scale, i);
+        double ih =  round(h*factor);
+        double iw =  round(w*factor);
+        int ex_h = round(ih/4.) - 2;
+        int ex_w = round(iw/4.) - 2;
+        ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+        ih =  round(h*factor);
+        iw =  round(w*factor);
+        ex_h = round(ih/8.) - 2;
+        ex_w = round(iw/8.) - 2;
+        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+        for(j = i+interval; j < max_scale; j += interval){
+            factor /= 2.;
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+        }
+    }
+    for(i = 0; i < max_scale+interval; ++i){
+        image out = ims[i];
+        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+        for(j = 0; j < out.c*out.h*out.w; ++j){
+            if(j != 0)fprintf(fp, ",");
+            fprintf(fp, "%g", out.data[j]);
+        }
+        fprintf(fp, "\n");
+        free_image(out);
+    }
+    free(ims);
+    fclose(fp);
+    cvReleaseImage(&src);
+}
+
+void test_distribution()
+{
+    IplImage* img = 0;
+    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    int h = img->height/8-2;
+    int w = img->width/8-2;
+    image out = features_output_size(net, img, h, w);
+    int c = out.c;
+    out.c = 1;
+    show_image(out, "output");
+    out.c = c;
+    image input = ipl_to_image(img);
+    show_image(input, "input");
+    CvScalar s;
+    int i,j;
+    image affects = make_image(input.h, input.w, 1);
+    int count = 0;
+    for(i = 0; i<img->height; i += 1){
+        for(j = 0; j < img->width; j += 1){
+            IplImage *copy = cvCloneImage(img);
+            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
+            printf("%d/%d\n", count++, img->height*img->width);
+            s.val[0]=0;
+            s.val[1]=0;
+            s.val[2]=0;
+            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
+            image mod = features_output_size(net, copy, h, w);
+            image dist = image_distance(out, mod);
+            show_image(affects, "affects");
+            cvWaitKey(1);
+            cvReleaseImage(&copy);
+            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
+            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
+            free_image(mod);
+            free_image(dist);
+        }
+    }
+    show_image(affects, "Origins");
+    cvWaitKey(0);
+    cvWaitKey(0);
+}
+
+
+int main(int argc, char *argv[])
+{
+    //train_full();
+    //test_distribution();
+    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+
     //test_blas();
- //test_convolve_matrix();
-//    test_im2row();
-    //test_kernel_update();
+    //test_visualize();
+    //test_gpu_blas();
+    //test_blas();
+    //test_convolve_matrix();
+    //    test_im2row();
     //test_split();
     //test_ensemble();
-    test_nist();
+    //test_nist();
+    //test_cifar10();
+    //test_vince();
     //test_full();
+    //train_VOC();
+    //features_VOC_image(argv[1], argv[2], argv[3]);
+    //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
+    //visualize_imagenet_features("data/assira/train.list");
+    visualize_imagenet_features("data/VOC2011.list");
+    fprintf(stderr, "Success!\n");
     //test_random_preprocess();
     //test_random_classify();
     //test_parser();

--
Gitblit v1.10.0