From cc06817efa24f20811ef6b32143c6700a91c5f2a Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 11 Apr 2014 08:00:27 +0000
Subject: [PATCH] Attempt at visualizing ImageNet Features

---
 src/tests.c |  799 ++++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 623 insertions(+), 176 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 0e639be..5d9136d 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -1,68 +1,136 @@
 #include "connected_layer.h"
+//#include "old_conv.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 #include "network.h"
 #include "image.h"
 #include "parser.h"
+#include "data.h"
+#include "matrix.h"
+#include "utils.h"
+#include "mini_blas.h"
 
 #include <time.h>
 #include <stdlib.h>
 #include <stdio.h>
 
+#define _GNU_SOURCE
+#include <fenv.h>
+
 void test_convolve()
 {
-    image dog = load_image("dog.jpg");
-    //show_image_layers(dog, "Dog");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     image kernel = make_random_image(3,3,dog.c);
     image edge = make_image(dog.h, dog.w, 1);
     int i;
     clock_t start = clock(), end;
     for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge);
+        convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
 }
 
+void test_convolve_matrix()
+{
+    image dog = load_image("dog.jpg",300,400);
+    printf("dog channels %d\n", dog.c);
+    
+    int size = 11;
+    int stride = 4;
+    int n = 40;
+    float *filters = make_random_image(size, size, dog.c*n).data;
+
+    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+    int mh = (size*size*dog.c);
+    float *matrix = calloc(mh*mw, sizeof(float));
+
+    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+
+
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+    }
+    end = clock();
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+    show_image_layers(edge, "Test Convolve");
+    cvWaitKey(0);
+}
+
 void test_color()
 {
-    image dog = load_image("test_color.png");
+    image dog = load_image("test_color.png", 300, 400);
     show_image_layers(dog, "Test Color");
 }
 
-void test_convolutional_layer()
+void verify_convolutional_layer()
 {
     srand(0);
-    image dog = load_image("dog.jpg");
     int i;
-    int n = 3;
+    int n = 1;
     int stride = 1;
     int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    char buff[256];
-    for(i = 0; i < n; ++i) {
-        sprintf(buff, "Kernel %d", i);
-        show_image(layer.kernels[i], buff);
-    }
-    run_convolutional_layer(dog, layer);
+    float eps = .00000001;
+    image test = make_random_image(5,5, 1);
+    convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
+    image out = get_convolutional_image(layer);
+    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
     
-    maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
-    run_maxpool_layer(layer.output,mlayer);
+    forward_convolutional_layer(layer, test.data);
+    image base = copy_image(out);
 
-    show_image_layers(mlayer.output, "Test Maxpool Layer");
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        test.data[i] += eps;
+        forward_convolutional_layer(layer, test.data);
+        image partial = copy_image(out);
+        subtract_image(partial, base);
+        scale_image(partial, 1/eps);
+        jacobian[i] = partial.data;
+        test.data[i] -= eps;
+    }
+    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
+    image in_delta = make_image(test.h, test.w, test.c);
+    image out_delta = get_convolutional_delta(layer);
+    for(i = 0; i < out.h*out.w*out.c; ++i){
+        out_delta.data[i] = 1;
+        backward_convolutional_layer(layer, in_delta.data);
+        image partial = copy_image(in_delta);
+        jacobian2[i] = partial.data;
+        out_delta.data[i] = 0;
+    }
+    int j;
+    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        for(j =0 ; j < out.h*out.w*out.c; ++j){
+            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
+            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
+            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
+        }
+    }
+
+
+    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
+    show_image(mj1, "forward jacobian");
+    show_image(mj2, "backward jacobian");
 }
 
 void test_load()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     show_image(dog, "Test Load");
     show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     int n = 3;
     image up = make_image(n*dog.h, n*dog.w, dog.c);
     upsample_image(dog, n, up);
@@ -73,13 +141,13 @@
 void test_rotate()
 {
     int i;
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     clock_t start = clock(), end;
     for(i = 0; i < 1001; ++i){
         rotate_image(dog);
     }
     end = clock();
-    printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image(dog, "Test Rotate");
 
     image random = make_random_image(3,3,3);
@@ -90,168 +158,546 @@
     show_image(random, "Test Rotate Random");
 }
 
-void test_network()
-{
-    network net;
-    net.n = 11;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
-    net.types[0] = CONVOLUTIONAL;
-    net.types[1] = MAXPOOL;
-    net.types[2] = CONVOLUTIONAL;
-    net.types[3] = MAXPOOL;
-    net.types[4] = CONVOLUTIONAL;
-    net.types[5] = CONVOLUTIONAL;
-    net.types[6] = CONVOLUTIONAL;
-    net.types[7] = MAXPOOL;
-    net.types[8] = CONNECTED;
-    net.types[9] = CONNECTED;
-    net.types[10] = CONNECTED;
-
-    image dog = load_image("test_hinton.jpg");
-
-    int n = 48;
-    int stride = 4;
-    int size = 11;
-    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
-
-    n = 128;
-    size = 5;
-    stride = 1;
-    convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
-    maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
-
-    n = 192;
-    size = 3;
-    convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
-    convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
-    n = 128;
-    convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
-    maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
-    connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
-    connected_layer nl2 = *make_connected_layer(4096, 4096, RELU);
-    connected_layer nl3 = *make_connected_layer(4096, 1000, RELU);
-
-    net.layers[0] = &cl;
-    net.layers[1] = &ml;
-    net.layers[2] = &cl2;
-    net.layers[3] = &ml2;
-    net.layers[4] = &cl3;
-    net.layers[5] = &cl4;
-    net.layers[6] = &cl5;
-    net.layers[7] = &ml3;
-    net.layers[8] = &nl;
-    net.layers[9] = &nl2;
-    net.layers[10] = &nl3;
-
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 10; ++i){
-        run_network(dog, net);
-        rotate_image(dog);
-    }
-    end = clock();
-    printf("Ran %lf second per iteration\n", (double)(end-start)/CLOCKS_PER_SEC/10);
-
-    show_image_layers(get_network_image(net), "Test Network Layer");
-}
-
-void test_backpropagate()
-{
-    int n = 3;
-    int size = 4;
-    int stride = 10;
-    image dog = load_image("dog.jpg");
-    show_image(dog, "Test Backpropagate Input");
-    image dog_copy = copy_image(dog);
-    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    run_convolutional_layer(dog, cl);
-    show_image(cl.output, "Test Backpropagate Output");
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 100; ++i){
-        backpropagate_convolutional_layer(dog_copy, cl);
-    }
-    end = clock();
-    printf("Backpropagate: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    start = clock();
-    for(i = 0; i < 100; ++i){
-        backpropagate_convolutional_layer_convolve(dog, cl);
-    }
-    end = clock();
-    printf("Backpropagate Using Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    show_image(dog_copy, "Test Backpropagate 1");
-    show_image(dog, "Test Backpropagate 2");
-    subtract_image(dog, dog_copy);
-    show_image(dog, "Test Backpropagate Difference");
-}
-
-void test_ann()
-{
-    network net;
-    net.n = 3;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
-    net.types[0] = CONNECTED;
-    net.types[1] = CONNECTED;
-    net.types[2] = CONNECTED;
-
-    connected_layer nl = *make_connected_layer(1, 20, RELU);
-    connected_layer nl2 = *make_connected_layer(20, 20, RELU);
-    connected_layer nl3 = *make_connected_layer(20, 1, RELU);
-
-    net.layers[0] = &nl;
-    net.layers[1] = &nl2;
-    net.layers[2] = &nl3;
-
-    image t = make_image(1,1,1);
-    int count = 0;
-        
-    double avgerr = 0;
-    while(1){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
-        set_pixel(t,0,0,0,v);
-        run_network(t, net);
-        double *out = get_network_output(net);
-        double err = pow((out[0]-truth),2.);
-        avgerr = .99 * avgerr + .01 * err;
-        //if(++count % 100000 == 0) printf("%f\n", avgerr);
-        if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        out[0] = truth - out[0];
-        learn_network(t, net);
-        update_network(net, .001);
-    }
-
-}
-
 void test_parser()
 {
-    network net = parse_network_cfg("test.cfg");
-    image t = make_image(1,1,1);
+    network net = parse_network_cfg("test_parser.cfg");
+    float input[1];
     int count = 0;
         
-    double avgerr = 0;
-    while(1){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
-        set_pixel(t,0,0,0,v);
-        run_network(t, net);
-        double *out = get_network_output(net);
-        double err = pow((out[0]-truth),2.);
+    float avgerr = 0;
+    while(++count < 100000000){
+        float v = ((float)rand()/RAND_MAX);
+        float truth = v*v;
+        input[0] = v;
+        forward_network(net, input);
+        float *out = get_network_output(net);
+        float *delta = get_network_delta(net);
+        float err = pow((out[0]-truth),2.);
         avgerr = .99 * avgerr + .01 * err;
-        //if(++count % 100000 == 0) printf("%f\n", avgerr);
-        if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        out[0] = truth - out[0];
-        learn_network(t, net);
-        update_network(net, .001);
+        if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+        delta[0] = truth - out[0];
+        backward_network(net, input, &truth);
+        update_network(net, .001,0,0);
     }
 }
 
-int main()
+void test_data()
 {
-    test_parser();
+    char *labels[] = {"cat","dog"};
+    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
+    free_data(train);
+}
+
+void train_full()
+{
+    network net = parse_network_cfg("cfg/imagenet.cfg");
+    srand(2222222);
+    int i = 0;
+    char *labels[] = {"cat","dog"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(1){
+        i += 1000;
+        data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
+        //image im = float_to_image(256, 256, 3,train.X.vals[0]);
+        //visualize_network(net);
+        //cvWaitKey(100);
+        //show_image(im, "input");
+        //cvWaitKey(100);
+        //scale_data_rows(train, 1./255.);
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%10000==0){
+            char buff[256];
+            sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+            save_network(net, buff);
+        }
+        //lr *= .99;
+    }
+}
+
+void test_visualize()
+{
+    network net = parse_network_cfg("cfg/imagenet.cfg");
+    srand(2222222);
+    visualize_network(net);
+    cvWaitKey(0);
+}
+void test_full()
+{
+    network net = parse_network_cfg("cfg/backup_1300.cfg");
+    srand(2222222);
+    int i,j;
+    int total = 100;
+    char *labels[] = {"cat","dog"};
+    FILE *fp = fopen("preds.txt","w");
+    for(i = 0; i < total; ++i){
+        visualize_network(net);
+        cvWaitKey(100);
+        data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,test.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        normalize_data_rows(test);
+        for(j = 0; j < test.X.rows; ++j){
+            float *x = test.X.vals[j];
+            forward_network(net, x);
+            int class = get_predicted_class_network(net);
+            fprintf(fp, "%d\n", class);
+        }
+        free_data(test);
+    }
+    fclose(fp);
+}
+
+void test_cifar10()
+{
+    data test = load_cifar10_data("images/cifar10/test_batch.bin");
+    scale_data_rows(test, 1./255);
+    network net = parse_network_cfg("cfg/cifar10.cfg");
+    int count = 0;
+    float lr = .000005;
+    float momentum = .99;
+    float decay = 0.001;
+    decay = 0;
+    int batch = 10000;
+    while(++count <= 10000){
+        char buff[256];
+        sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1);
+        data train = load_cifar10_data(buff);
+        scale_data_rows(train, 1./255);
+        train_network_sgd(net, train, batch, lr, momentum, decay);
+        //printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+
+        float test_acc = network_accuracy(net, test);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc);
+        free_data(train);
+    }
+
+}
+
+void test_vince()
+{
+    network net = parse_network_cfg("cfg/vince.cfg");
+    data train = load_categorical_data_csv("images/vince.txt", 144, 2);
+    normalize_data_rows(train);
+
+    int count = 0;
+    float lr = .00005;
+    float momentum = .9;
+    float decay = 0.0001;
+    decay = 0;
+    int batch = 10000;
+    while(++count <= 10000){
+        float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+    }
+}
+
+void test_nist()
+{
+    srand(444444);
+    srand(888888);
+    network net = parse_network_cfg("cfg/nist_basic.cfg");
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
+    normalize_data_rows(train);
+    normalize_data_rows(test);
+    //randomize_data(train);
+    int count = 0;
+    float lr = .00005;
+    float momentum = .9;
+    float decay = 0.0001;
+    decay = 0;
+    //clock_t start = clock(), end;
+    int batch = 10000;
+    while(++count <= 10000){
+        float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+        //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
+        //end = clock();
+        //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+        //start=end;
+        /*
+           if(count%5 == 0){
+           float train_acc = network_accuracy(net, train);
+           fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+           float test_acc = network_accuracy(net, test);
+           fprintf(stderr, "TEST: %f\n\n", test_acc);
+           printf("%d, %f, %f\n", count, train_acc, test_acc);
+        //lr *= .5;
+        }
+         */
+    }
+}
+
+void test_ensemble()
+{
+    int i;
+    srand(888888);
+    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    normalize_data_rows(d);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+    normalize_data_rows(test);
+    data train = d;
+    //   data *split = split_data(d, 1, 10);
+    //   data train = split[0];
+    //   data test = split[1];
+    matrix prediction = make_matrix(test.y.rows, test.y.cols);
+    int n = 30;
+    for(i = 0; i < n; ++i){
+        int count = 0;
+        float lr = .0005;
+        float momentum = .9;
+        float decay = .01;
+        network net = parse_network_cfg("nist.cfg");
+        while(++count <= 15){
+            float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+            lr /= 2; 
+        }
+        matrix partial = network_predict_data(net, test);
+        float acc = matrix_accuracy(test.y, partial);
+        printf("Model Accuracy: %lf\n", acc);
+        matrix_add_matrix(partial, prediction);
+        acc = matrix_accuracy(test.y, prediction);
+        printf("Current Ensemble Accuracy: %lf\n", acc);
+        free_matrix(partial);
+    }
+    float acc = matrix_accuracy(test.y, prediction);
+    printf("Full Ensemble Accuracy: %lf\n", acc);
+}
+
+void test_random_classify()
+{
+    network net = parse_network_cfg("connected.cfg");
+    matrix m = csv_to_matrix("train.csv");
+    //matrix ho = hold_out_matrix(&m, 2500);
+    float *truth = pop_column(&m, 0);
+    //float *ho_truth = pop_column(&ho, 0);
+    int i;
+    clock_t start = clock(), end;
+    int count = 0;
+    while(++count <= 300){
+        for(i = 0; i < m.rows; ++i){
+            int index = rand()%m.rows;
+            //image p = float_to_image(1690,1,1,m.vals[index]);
+            //normalize_image(p);
+            forward_network(net, m.vals[index]);
+            float *out = get_network_output(net);
+            float *delta = get_network_delta(net);
+            //printf("%f\n", out[0]);
+            delta[0] = truth[index] - out[0];
+            // printf("%f\n", delta[0]);
+            //printf("%f %f\n", truth[index], out[0]);
+            //backward_network(net, m.vals[index], );
+            update_network(net, .00001, 0,0);
+        }
+        //float test_acc = error_network(net, m, truth);
+        //float valid_acc = error_network(net, ho, ho_truth);
+        //printf("%f, %f\n", test_acc, valid_acc);
+        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
+        //if(valid_acc > .70) break;
+    }
+    end = clock();
+    FILE *fp = fopen("submission/out.txt", "w");
+    matrix test = csv_to_matrix("test.csv");
+    truth = pop_column(&test, 0);
+    for(i = 0; i < test.rows; ++i){
+        forward_network(net, test.vals[i]);
+        float *out = get_network_output(net);
+        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
+        else fprintf(fp, "1\n");
+    }
+    fclose(fp);
+    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+}
+
+void test_split()
+{
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data *split = split_data(train, 0, 13);
+    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
+}
+
+void test_im2row()
+{
+    int h = 20;
+    int w = 20;
+    int c = 3;
+    int stride = 1;
+    int size = 11;
+    image test = make_random_image(h,w,c);
+    int mc = 1;
+    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+    int mh = (size*size*c);
+    int msize = mc*mw*mh;
+    float *matrix = calloc(msize, sizeof(float));
+    int i;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+        //image render = float_to_image(mh, mw, mc, matrix);
+    }
+}
+
+void train_VOC()
+{
+    network net = parse_network_cfg("cfg/voc_start.cfg");
+    srand(2222222);
+    int i = 20;
+    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(i++ < 1000 || 1){
+        data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
+
+        image im = float_to_image(300, 400, 3,train.X.vals[0]);
+        show_image(im, "input");
+        visualize_network(net);
+        cvWaitKey(100);
+
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
+            save_network(net, buff);
+        }
+        //lr *= .99;
+    }
+}
+
+int voc_size(int x)
+{
+    x = x-1+3;
+    x = x-1+3;
+    x = x-1+3;
+    x = (x-1)*2+1;
+    x = x-1+5;
+    x = (x-1)*2+1;
+    x = (x-1)*4+11;
+    return x;
+}
+
+image features_output_size(network net, IplImage *src, int outh, int outw)
+{
+    int h = voc_size(outh);
+    int w = voc_size(outw);
+    fprintf(stderr, "%d %d\n", h, w);
+
+    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+    cvResize(src, sized, CV_INTER_LINEAR);
+    image im = ipl_to_image(sized);
+    resize_network(net, im.h, im.w, im.c);
+    forward_network(net, im.data);
+    image out = get_network_image_layer(net, 6);
+    free_image(im);
+    cvReleaseImage(&sized);
+    return copy_image(out);
+}
+
+void features_VOC_image_size(char *image_path, int h, int w)
+{
+    int j;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    fprintf(stderr, "%s\n", image_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    image out = features_output_size(net, src, h, w);
+    for(j = 0; j < out.c*out.h*out.w; ++j){
+        if(j != 0) printf(",");
+        printf("%g", out.data[j]);
+    }
+    printf("\n");
+    free_image(out);
+    cvReleaseImage(&src);
+}
+
+void visualize_imagenet_features(char *filename)
+{
+    int i,j,k;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    list *plist = get_paths(filename);
+    node *n = plist->front;
+    int h = voc_size(1), w = voc_size(1);
+    int num = get_network_image(net).c;
+    image *vizs = calloc(num, sizeof(image));
+    for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
+    while(n){
+        char *image_path = (char *)n->val;
+        image im = load_image(image_path, 0, 0);
+        printf("Processing %dx%d image\n", im.h, im.w);
+        resize_network(net, im.h, im.w, im.c);
+        forward_network(net, im.data);
+        image out = get_network_image(net);
+
+        int dh = (im.h - h)/h;
+        int dw = (im.w - w)/w;
+        for(i = 0; i < out.h; ++i){
+            for(j = 0; j < out.w; ++j){
+                image sub = get_sub_image(im, dh*i, dw*j, h, w);
+                for(k = 0; k < out.c; ++k){
+                    float val = get_pixel(out, i, j, k);
+                    //printf("%f, ", val);
+                    image sub_c = copy_image(sub);
+                    scale_image(sub_c, val);
+                    add_into_image(sub_c, vizs[k], 0, 0);
+                    free_image(sub_c);
+                }
+                free_image(sub);
+            }
+        }
+        //printf("\n");
+        show_images(vizs, 10, "IMAGENET Visualization");
+        cvWaitKey(1000);
+        n = n->next;
+    }
+    cvWaitKey(0);
+}
+
+void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
+{
+    int i,j;
+    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+    char image_path[1024];
+    sprintf(image_path, "%s/%s",image_dir, image_file);
+    char out_path[1024];
+    sprintf(out_path, "%s/%s.txt",out_dir, image_file);
+    printf("%s\n", image_file);
+    FILE *fp = fopen(out_path, "w");
+    if(fp == 0) file_error(out_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    int w = src->width;
+    int h = src->height;
+    int sbin = 8;
+    int interval = 4;
+    double scale = pow(2., 1./interval);
+    int m = (w<h)?w:h;
+    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+    if(max_scale < interval) error("max_scale must be >= interval");
+    image *ims = calloc(max_scale+interval, sizeof(image));
+
+    for(i = 0; i < interval; ++i){
+        double factor = 1./pow(scale, i);
+        double ih =  round(h*factor);
+        double iw =  round(w*factor);
+        int ex_h = round(ih/4.) - 2;
+        int ex_w = round(iw/4.) - 2;
+        ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+        ih =  round(h*factor);
+        iw =  round(w*factor);
+        ex_h = round(ih/8.) - 2;
+        ex_w = round(iw/8.) - 2;
+        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+        for(j = i+interval; j < max_scale; j += interval){
+            factor /= 2.;
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+        }
+    }
+    for(i = 0; i < max_scale+interval; ++i){
+        image out = ims[i];
+        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+        for(j = 0; j < out.c*out.h*out.w; ++j){
+            if(j != 0)fprintf(fp, ",");
+            fprintf(fp, "%g", out.data[j]);
+        }
+        fprintf(fp, "\n");
+        free_image(out);
+    }
+    free(ims);
+    fclose(fp);
+    cvReleaseImage(&src);
+}
+
+void test_distribution()
+{
+    IplImage* img = 0;
+    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    int h = img->height/8-2;
+    int w = img->width/8-2;
+    image out = features_output_size(net, img, h, w);
+    int c = out.c;
+    out.c = 1;
+    show_image(out, "output");
+    out.c = c;
+    image input = ipl_to_image(img);
+    show_image(input, "input");
+    CvScalar s;
+    int i,j;
+    image affects = make_image(input.h, input.w, 1);
+    int count = 0;
+    for(i = 0; i<img->height; i += 1){
+        for(j = 0; j < img->width; j += 1){
+            IplImage *copy = cvCloneImage(img);
+            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
+            printf("%d/%d\n", count++, img->height*img->width);
+            s.val[0]=0;
+            s.val[1]=0;
+            s.val[2]=0;
+            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
+            image mod = features_output_size(net, copy, h, w);
+            image dist = image_distance(out, mod);
+            show_image(affects, "affects");
+            cvWaitKey(1);
+            cvReleaseImage(&copy);
+            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
+            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
+            free_image(mod);
+            free_image(dist);
+        }
+    }
+    show_image(affects, "Origins");
+    cvWaitKey(0);
+    cvWaitKey(0);
+}
+
+
+int main(int argc, char *argv[])
+{
+    //train_full();
+    //test_distribution();
+    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+
+    //test_blas();
+    //test_visualize();
+    //test_gpu_blas();
+    //test_blas();
+    //test_convolve_matrix();
+    //    test_im2row();
+    //test_split();
+    //test_ensemble();
+    //test_nist();
+    //test_cifar10();
+    //test_vince();
+    //test_full();
+    //train_VOC();
+    //features_VOC_image(argv[1], argv[2], argv[3]);
+    //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
+    //visualize_imagenet_features("data/assira/train.list");
+    visualize_imagenet_features("data/VOC2011.list");
+    fprintf(stderr, "Success!\n");
+    //test_random_preprocess();
+    //test_random_classify();
+    //test_parser();
     //test_backpropagate();
     //test_ann();
     //test_convolve();
@@ -260,7 +706,8 @@
     //test_load();
     //test_network();
     //test_convolutional_layer();
+    //verify_convolutional_layer();
     //test_color();
-    cvWaitKey(0);
+    //cvWaitKey(0);
     return 0;
 }

--
Gitblit v1.10.0