From ccde487525fc89a1d4bc3e1cf11a18971e8451c9 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@users.noreply.github.com>
Date: Sat, 11 Jul 2015 00:33:24 +0000
Subject: [PATCH] Create README.md

---
 src/network_kernels.cu |   24 +++++++++---------------
 1 files changed, 9 insertions(+), 15 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 5e353ae..9cc8be8 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -15,6 +15,7 @@
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
@@ -44,6 +45,8 @@
             forward_cost_layer_gpu(l, state);
         } else if(l.type == SOFTMAX){
             forward_softmax_layer_gpu(l, state);
+        } else if(l.type == NORMALIZATION){
+            forward_normalization_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
@@ -59,11 +62,12 @@
 {
     int i;
     float * original_input = state.input;
+    float * original_delta = state.delta;
     for(i = net.n-1; i >= 0; --i){
         layer l = net.layers[i];
         if(i == 0){
             state.input = original_input;
-            state.delta = 0;
+            state.delta = original_delta;
         }else{
             layer prev = net.layers[i-1];
             state.input = prev.output_gpu;
@@ -79,6 +83,8 @@
             backward_dropout_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer_gpu(l, state);
+        } else if(l.type == NORMALIZATION){
+            backward_normalization_layer_gpu(l, state);
         } else if(l.type == SOFTMAX){
             if(i != 0) backward_softmax_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
@@ -120,6 +126,7 @@
         cuda_push_array(*net.truth_gpu, y, y_size);
     }
     state.input = *net.input_gpu;
+    state.delta = 0;
     state.truth = *net.truth_gpu;
     state.train = 1;
     forward_network_gpu(net, state);
@@ -134,20 +141,7 @@
 {
     layer l = net.layers[i];
     cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
-    if(l.type == CONVOLUTIONAL){
-        return l.output;
-    } else if(l.type == DECONVOLUTIONAL){
-        return l.output;
-    } else if(l.type == CONNECTED){
-        return l.output;
-    } else if(l.type == DETECTION){
-        return l.output;
-    } else if(l.type == MAXPOOL){
-        return l.output;
-    } else if(l.type == SOFTMAX){
-        return l.output;
-    }
-    return 0;
+    return l.output;
 }
 
 float *get_network_output_gpu(network net)

--
Gitblit v1.10.0