From cd2bdec09030edf7da79ecdeb38d908c106850b3 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 23 Feb 2018 12:05:31 +0000
Subject: [PATCH] Updated to CUDA 9.1. And fixed no_gpu dependecies.

---
 README.md |   14 ++++++++++----
 1 files changed, 10 insertions(+), 4 deletions(-)

diff --git a/README.md b/README.md
index e7683da..b7a4bd5 100644
--- a/README.md
+++ b/README.md
@@ -32,13 +32,13 @@
 
 * both Windows and Linux
 * both OpenCV 3.x and OpenCV 2.4.13
-* both cuDNN 5 and cuDNN 6
+* both cuDNN v5-v7
 * CUDA >= 7.5
 * also create SO-library on Linux and DLL-library on Windows
 
 ##### Requires: 
 * **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
-* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
+* **CUDA 9.1**: https://developer.nvidia.com/cuda-downloads
 * **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
 * **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
   - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
@@ -117,7 +117,7 @@
 Just do `make` in the darknet directory.
 Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
 * `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
-* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
 * `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
 * `DEBUG=1` to bould debug version of Yolo
 * `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
@@ -142,7 +142,7 @@
   
 5. If you want to build with CUDNN to speed up then:
       
-    * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
+    * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn
       
     * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
       
@@ -322,10 +322,14 @@
 
 For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
 
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
 * **IoU** (intersect of union) - average instersect of union of objects and detections for a certain threshold = 0.24
 
 * **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
 
+In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
+
 ![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
 
 ### How to calculate mAP on PascalVOC 2007:
@@ -359,6 +363,8 @@
 
   * for training on small objects, add the parameter `small_object=1` in the last layer [region] in your cfg-file
 
+  * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file
+
 2. After training - for detection:
 
   * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)

--
Gitblit v1.10.0