From cd8a3dcb4ca42f22ad8f46a95e00977c92be6bbd Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 08 Feb 2018 23:22:42 +0000
Subject: [PATCH] Compile fixes

---
 src/deconvolutional_kernels.cu |   47 ++++++++++++++++++++++++++---------------------
 1 files changed, 26 insertions(+), 21 deletions(-)

diff --git a/src/deconvolutional_kernels.cu b/src/deconvolutional_kernels.cu
index 1d05a80..d6259fb 100644
--- a/src/deconvolutional_kernels.cu
+++ b/src/deconvolutional_kernels.cu
@@ -1,3 +1,7 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
 extern "C" {
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
@@ -9,7 +13,7 @@
 #include "cuda.h"
 }
 
-extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in)
+extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
 {
     int i;
     int out_h = deconvolutional_out_height(layer);
@@ -20,21 +24,22 @@
     int n = layer.h*layer.w;
     int k = layer.c;
 
-    bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
+    fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
 
     for(i = 0; i < layer.batch; ++i){
-        float *a = layer.filters_gpu;
-        float *b = in + i*layer.c*layer.h*layer.w;
+        float *a = layer.weights_gpu;
+        float *b = state.input + i*layer.c*layer.h*layer.w;
         float *c = layer.col_image_gpu;
 
         gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
 
         col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
     }
+    add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
     activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
 }
 
-extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu)
+extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int out_h = deconvolutional_out_height(layer);
@@ -45,29 +50,29 @@
     gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
     backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
 
-    if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
         int m = layer.c;
         int n = layer.size*layer.size*layer.n;
         int k = layer.h*layer.w;
 
-        float *a = in + i*m*n;
+        float *a = state.input + i*m*n;
         float *b = layer.col_image_gpu;
-        float *c = layer.filter_updates_gpu;
+        float *c = layer.weight_updates_gpu;
 
         im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, 
                 layer.size, layer.stride, 0, b);
         gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
 
-        if(delta_gpu){
+        if(state.delta){
             int m = layer.c;
             int n = layer.h*layer.w;
             int k = layer.size*layer.size*layer.n;
 
-            float *a = layer.filters_gpu;
+            float *a = layer.weights_gpu;
             float *b = layer.col_image_gpu;
-            float *c = delta_gpu + i*n*m;
+            float *c = state.delta + i*n*m;
 
             gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         }
@@ -76,29 +81,29 @@
 
 extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
 {
-    cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
 extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
 {
-    cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
     cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
-extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer)
+extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
 
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
+    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+    scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
 }
 

--
Gitblit v1.10.0