From cd8d53df21f3ad2810add2a8cff766c745f55a17 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 09 May 2014 22:14:52 +0000
Subject: [PATCH] So there WAS this huge bug. Gone now

---
 src/network.c |  166 +++++++++++++++++++++++++++++++++++++------------------
 1 files changed, 112 insertions(+), 54 deletions(-)

diff --git a/src/network.c b/src/network.c
index e2c44b0..b75eddf 100644
--- a/src/network.c
+++ b/src/network.c
@@ -6,8 +6,8 @@
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
-//#include "old_conv.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "softmax_layer.h"
 
 network make_network(int n, int batch)
@@ -19,6 +19,9 @@
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
+    #ifdef GPU
+    net.input_cl = 0;
+    #endif
     return net;
 }
 
@@ -48,9 +51,9 @@
     fprintf(fp, "[connected]\n");
     if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "output=%d\n"
-                "activation=%s\n",
-                l->outputs,
-                get_activation_string(l->activation));
+            "activation=%s\n",
+            l->outputs,
+            get_activation_string(l->activation));
     fprintf(fp, "data=");
     for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
     for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
@@ -61,13 +64,27 @@
 {
     fprintf(fp, "[maxpool]\n");
     if(first) fprintf(fp,   "batch=%d\n"
-                            "height=%d\n"
-                            "width=%d\n"
-                            "channels=%d\n",
-                            l->batch,l->h, l->w, l->c);
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
     fprintf(fp, "stride=%d\n\n", l->stride);
 }
 
+void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
+{
+    fprintf(fp, "[localresponsenormalization]\n");
+    if(first) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\n"
+                "alpha=%g\n"
+                "beta=%g\n"
+                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+}
+
 void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
 {
     fprintf(fp, "[softmax]\n");
@@ -88,24 +105,42 @@
             print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
         else if(net.types[i] == MAXPOOL)
             print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
+        else if(net.types[i] == NORMALIZATION)
+            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
     }
     fclose(fp);
 }
 
-void forward_network(network net, float *input)
+void forward_network(network net, float *input, int train)
 {
     int i;
+    #ifdef GPU
+    cl_setup();
+    size_t size = get_network_input_size(net);
+    if(!net.input_cl){
+        net.input_cl = clCreateBuffer(cl.context,
+            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
+        check_error(cl);
+    }
+    cl_write_array(net.input_cl, input, size);
+    cl_mem input_cl = net.input_cl;
+    #endif
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            #ifdef GPU
+            forward_convolutional_layer_gpu(layer, input_cl);
+            input_cl = layer.output_cl;
+            #else
             forward_convolutional_layer(layer, input);
+            #endif
             input = layer.output;
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
+            forward_connected_layer(layer, input, train);
             input = layer.output;
         }
         else if(net.types[i] == SOFTMAX){
@@ -118,6 +153,11 @@
             forward_maxpool_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
     }
 }
 
@@ -135,6 +175,9 @@
         else if(net.types[i] == SOFTMAX){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
+        else if(net.types[i] == NORMALIZATION){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer(layer, step, momentum, decay);
@@ -156,6 +199,9 @@
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return layer.output;
     }
     return 0;
 }
@@ -225,22 +271,23 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer);
-            //learn_convolutional_layer(layer);
-            if(i != 0) backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(layer, prev_input);
-            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+            backward_connected_layer(layer, prev_input, prev_delta);
         }
     }
     return error;
@@ -248,7 +295,7 @@
 
 float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
 {
-    forward_network(net, x);
+    forward_network(net, x, 1);
     //int class = get_predicted_class_network(net);
     float error = backward_network(net, x, y);
     update_network(net, step, momentum, decay);
@@ -272,7 +319,7 @@
             error += err;
             ++pos;
         }
-        
+
 
         //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
         //if((i+1)%10 == 0){
@@ -290,7 +337,7 @@
         int index = rand()%d.X.rows;
         float *x = d.X.vals[index];
         float *y = d.y.vals[index];
-        forward_network(net, x);
+        forward_network(net, x, 1);
         int class = get_predicted_class_network(net);
         backward_network(net, x, y);
         correct += (y[class]?1:0);
@@ -317,6 +364,27 @@
     fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+int get_network_input_size_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.inputs;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
+    return 0;
+}
+
 int get_network_output_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -340,36 +408,6 @@
     return 0;
 }
 
-/*
-int resize_network(network net, int h, int w, int c)
-{
-    int i;
-    for (i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            layer->h = h;
-            layer->w = w;
-            layer->c = c;
-            image output = get_convolutional_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            layer->h = h;
-            layer->w = w;
-            layer->c = c;
-            image output = get_maxpool_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }
-    }
-    return 0;
-}
-*/
-
 int resize_network(network net, int h, int w, int c)
 {
     int i;
@@ -381,16 +419,21 @@
             h = output.h;
             w = output.w;
             c = output.c;
-        }
-        else if(net.types[i] == MAXPOOL){
+        }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
             resize_maxpool_layer(layer, h, w, c);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
-        }
-        else{
+        }else if(net.types[i] == NORMALIZATION){
+            normalization_layer *layer = (normalization_layer *)net.layers[i];
+            resize_normalization_layer(layer, h, w, c);
+            image output = get_normalization_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else{
             error("Cannot resize this type of layer");
         }
     }
@@ -403,6 +446,11 @@
     return get_network_output_size_layer(net, i);
 }
 
+int get_network_input_size(network net)
+{
+    return get_network_output_size_layer(net, 0);
+}
+
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -413,6 +461,10 @@
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
     }
+    else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return get_normalization_image(layer);
+    }
     return make_empty_image(0,0,0);
 }
 
@@ -428,20 +480,25 @@
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_layer(layer, buff);
+            prev = visualize_convolutional_layer(layer, buff, prev);
+        }
+        if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            visualize_normalization_layer(layer, buff);
         }
     } 
 }
 
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input);
+    forward_network(net, input, 0);
     float *out = get_network_output(net);
     return out;
 }
@@ -506,3 +563,4 @@
     return acc;
 }
 
+

--
Gitblit v1.10.0