From cd8d53df21f3ad2810add2a8cff766c745f55a17 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 09 May 2014 22:14:52 +0000
Subject: [PATCH] So there WAS this huge bug. Gone now

---
 src/tests.c | 1076 ++++++++++++++++++++++++++++++++++++++++-------------------
 1 files changed, 722 insertions(+), 354 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index c459a36..8105404 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -13,426 +13,794 @@
 #include <stdlib.h>
 #include <stdio.h>
 
+#define _GNU_SOURCE
+#include <fenv.h>
+
 void test_convolve()
 {
-    image dog = load_image("dog.jpg");
-    printf("dog channels %d\n", dog.c);
-    image kernel = make_random_image(3,3,dog.c);
-    image edge = make_image(dog.h, dog.w, 1);
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge, 1);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
+	image dog = load_image("dog.jpg",300,400);
+	printf("dog channels %d\n", dog.c);
+	image kernel = make_random_image(3,3,dog.c);
+	image edge = make_image(dog.h, dog.w, 1);
+	int i;
+	clock_t start = clock(), end;
+	for(i = 0; i < 1000; ++i){
+		convolve(dog, kernel, 1, 0, edge, 1);
+	}
+	end = clock();
+	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image_layers(edge, "Test Convolve");
 }
 
 void test_convolve_matrix()
 {
-    image dog = load_image("dog.jpg");
-    printf("dog channels %d\n", dog.c);
-    
-    int size = 11;
-    int stride = 1;
-    int n = 40;
-    double *filters = make_random_image(size, size, dog.c*n).data;
+	image dog = load_image("dog.jpg",300,400);
+	printf("dog channels %d\n", dog.c);
 
-    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
-    int mh = (size*size*dog.c);
-    double *matrix = calloc(mh*mw, sizeof(double));
+	int size = 11;
+	int stride = 4;
+	int n = 40;
+	float *filters = make_random_image(size, size, dog.c*n).data;
 
-    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+	int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+	int mh = (size*size*dog.c);
+	float *matrix = calloc(mh*mw, sizeof(float));
+
+	image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
 
 
-    int i;
-    clock_t start = clock(), end;
-    for(i = 0; i < 1000; ++i){
-        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
-        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
-    }
-    end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    show_image_layers(edge, "Test Convolve");
-    cvWaitKey(0);
+	int i;
+	clock_t start = clock(), end;
+	for(i = 0; i < 1000; ++i){
+		im2col_cpu(dog.data,  1, dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+		gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+	}
+	end = clock();
+	printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image_layers(edge, "Test Convolve");
+	cvWaitKey(0);
 }
 
 void test_color()
 {
-    image dog = load_image("test_color.png");
-    show_image_layers(dog, "Test Color");
-}
-
-void test_convolutional_layer()
-{
-    srand(0);
-    image dog = load_image("dog.jpg");
-    int i;
-    int n = 3;
-    int stride = 1;
-    int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
-    char buff[256];
-    for(i = 0; i < n; ++i) {
-        sprintf(buff, "Kernel %d", i);
-        show_image(layer.kernels[i], buff);
-    }
-    forward_convolutional_layer(layer, dog.data);
-    
-    image output = get_convolutional_image(layer);
-    maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
-    forward_maxpool_layer(mlayer, layer.output);
-
-    show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
+	image dog = load_image("test_color.png", 300, 400);
+	show_image_layers(dog, "Test Color");
 }
 
 void verify_convolutional_layer()
 {
-    srand(0);
-    int i;
-    int n = 1;
-    int stride = 1;
-    int size = 3;
-    double eps = .00000001;
-    image test = make_random_image(5,5, 1);
-    convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
-    image out = get_convolutional_image(layer);
-    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
-    
-    forward_convolutional_layer(layer, test.data);
-    image base = copy_image(out);
+	srand(0);
+	int i;
+	int n = 1;
+	int stride = 1;
+	int size = 3;
+	float eps = .00000001;
+	image test = make_random_image(5,5, 1);
+	convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
+	image out = get_convolutional_image(layer);
+	float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
 
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        test.data[i] += eps;
-        forward_convolutional_layer(layer, test.data);
-        image partial = copy_image(out);
-        subtract_image(partial, base);
-        scale_image(partial, 1/eps);
-        jacobian[i] = partial.data;
-        test.data[i] -= eps;
-    }
-    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
-    image in_delta = make_image(test.h, test.w, test.c);
-    image out_delta = get_convolutional_delta(layer);
-    for(i = 0; i < out.h*out.w*out.c; ++i){
-        out_delta.data[i] = 1;
-        backward_convolutional_layer(layer, test.data, in_delta.data);
-        image partial = copy_image(in_delta);
-        jacobian2[i] = partial.data;
-        out_delta.data[i] = 0;
-    }
-    int j;
-    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
-    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
-    for(i = 0; i < test.h*test.w*test.c; ++i){
-        for(j =0 ; j < out.h*out.w*out.c; ++j){
-            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
-            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
-            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
-        }
-    }
+	forward_convolutional_layer(layer, test.data);
+	image base = copy_image(out);
+
+	for(i = 0; i < test.h*test.w*test.c; ++i){
+		test.data[i] += eps;
+		forward_convolutional_layer(layer, test.data);
+		image partial = copy_image(out);
+		subtract_image(partial, base);
+		scale_image(partial, 1/eps);
+		jacobian[i] = partial.data;
+		test.data[i] -= eps;
+	}
+	float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
+	image in_delta = make_image(test.h, test.w, test.c);
+	image out_delta = get_convolutional_delta(layer);
+	for(i = 0; i < out.h*out.w*out.c; ++i){
+		out_delta.data[i] = 1;
+		backward_convolutional_layer(layer, in_delta.data);
+		image partial = copy_image(in_delta);
+		jacobian2[i] = partial.data;
+		out_delta.data[i] = 0;
+	}
+	int j;
+	float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+	float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+	for(i = 0; i < test.h*test.w*test.c; ++i){
+		for(j =0 ; j < out.h*out.w*out.c; ++j){
+			j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
+			j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
+			printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
+		}
+	}
 
 
-    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
-    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
-    show_image(mj1, "forward jacobian");
-    show_image(mj2, "backward jacobian");
-    
+	image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+	image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+	printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
+	show_image(mj1, "forward jacobian");
+	show_image(mj2, "backward jacobian");
 }
 
 void test_load()
 {
-    image dog = load_image("dog.jpg");
-    show_image(dog, "Test Load");
-    show_image_layers(dog, "Test Load");
+	image dog = load_image("dog.jpg", 300, 400);
+	show_image(dog, "Test Load");
+	show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg");
-    int n = 3;
-    image up = make_image(n*dog.h, n*dog.w, dog.c);
-    upsample_image(dog, n, up);
-    show_image(up, "Test Upsample");
-    show_image_layers(up, "Test Upsample");
+	image dog = load_image("dog.jpg", 300, 400);
+	int n = 3;
+	image up = make_image(n*dog.h, n*dog.w, dog.c);
+	upsample_image(dog, n, up);
+	show_image(up, "Test Upsample");
+	show_image_layers(up, "Test Upsample");
 }
 
 void test_rotate()
 {
-    int i;
-    image dog = load_image("dog.jpg");
-    clock_t start = clock(), end;
-    for(i = 0; i < 1001; ++i){
-        rotate_image(dog);
-    }
-    end = clock();
-    printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-    show_image(dog, "Test Rotate");
+	int i;
+	image dog = load_image("dog.jpg",300,400);
+	clock_t start = clock(), end;
+	for(i = 0; i < 1001; ++i){
+		rotate_image(dog);
+	}
+	end = clock();
+	printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+	show_image(dog, "Test Rotate");
 
-    image random = make_random_image(3,3,3);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
-    rotate_image(random);
-    show_image(random, "Test Rotate Random");
+	image random = make_random_image(3,3,3);
+	show_image(random, "Test Rotate Random");
+	rotate_image(random);
+	show_image(random, "Test Rotate Random");
+	rotate_image(random);
+	show_image(random, "Test Rotate Random");
 }
 
 void test_parser()
 {
-    network net = parse_network_cfg("test_parser.cfg");
-    double input[1];
-    int count = 0;
-        
-    double avgerr = 0;
-    while(++count < 100000000){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
-        input[0] = v;
-        forward_network(net, input);
-        double *out = get_network_output(net);
-        double *delta = get_network_delta(net);
-        double err = pow((out[0]-truth),2.);
-        avgerr = .99 * avgerr + .01 * err;
-        if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
-        delta[0] = truth - out[0];
-        backward_network(net, input, &truth);
-        update_network(net, .001,0,0);
-    }
+	network net = parse_network_cfg("test_parser.cfg");
+	float input[1];
+	int count = 0;
+
+	float avgerr = 0;
+	while(++count < 100000000){
+		float v = ((float)rand()/RAND_MAX);
+		float truth = v*v;
+		input[0] = v;
+		forward_network(net, input, 1);
+		float *out = get_network_output(net);
+		float *delta = get_network_delta(net);
+		float err = pow((out[0]-truth),2.);
+		avgerr = .99 * avgerr + .01 * err;
+		if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+		delta[0] = truth - out[0];
+		backward_network(net, input, &truth);
+		update_network(net, .001,0,0);
+	}
 }
 
 void test_data()
 {
-    char *labels[] = {"cat","dog"};
-    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
-    free_data(train);
+	char *labels[] = {"cat","dog"};
+	data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
+	free_data(train);
 }
 
+void train_full()
+{
+	network net = parse_network_cfg("cfg/imagenet.cfg");
+	srand(2222222);
+	int i = 0;
+	char *labels[] = {"cat","dog"};
+	float lr = .00001;
+	float momentum = .9;
+	float decay = 0.01;
+	while(1){
+		i += 1000;
+		data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
+		//image im = float_to_image(256, 256, 3,train.X.vals[0]);
+		//visualize_network(net);
+		//cvWaitKey(100);
+		//show_image(im, "input");
+		//cvWaitKey(100);
+		//scale_data_rows(train, 1./255.);
+		normalize_data_rows(train);
+		clock_t start = clock(), end;
+		float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+		end = clock();
+		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+		free_data(train);
+		if(i%10000==0){
+			char buff[256];
+			sprintf(buff, "cfg/assira_backup_%d.cfg", i);
+			save_network(net, buff);
+		}
+		//lr *= .99;
+	}
+}
+
+void test_visualize()
+{
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	srand(2222222);
+	visualize_network(net);
+	cvWaitKey(0);
+}
 void test_full()
 {
-    network net = parse_network_cfg("full.cfg");
-    srand(0);
-    int i = 0;
-    char *labels[] = {"cat","dog"};
-    double lr = .00001;
-    double momentum = .9;
-    double decay = 0.01;
-    while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
-        train_network(net, train, lr, momentum, decay);
-        free_data(train);
-        printf("Round %d\n", i);
-    }
+	network net = parse_network_cfg("cfg/backup_1300.cfg");
+	srand(2222222);
+	int i,j;
+	int total = 100;
+	char *labels[] = {"cat","dog"};
+	FILE *fp = fopen("preds.txt","w");
+	for(i = 0; i < total; ++i){
+		visualize_network(net);
+		cvWaitKey(100);
+		data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
+		image im = float_to_image(256, 256, 3,test.X.vals[0]);
+		show_image(im, "input");
+		cvWaitKey(100);
+		normalize_data_rows(test);
+		for(j = 0; j < test.X.rows; ++j){
+			float *x = test.X.vals[j];
+			forward_network(net, x, 0);
+			int class = get_predicted_class_network(net);
+			fprintf(fp, "%d\n", class);
+		}
+		free_data(test);
+	}
+	fclose(fp);
+}
+
+void test_cifar10()
+{
+	data test = load_cifar10_data("images/cifar10/test_batch.bin");
+	scale_data_rows(test, 1./255);
+	network net = parse_network_cfg("cfg/cifar10.cfg");
+	int count = 0;
+	float lr = .000005;
+	float momentum = .99;
+	float decay = 0.001;
+	decay = 0;
+	int batch = 10000;
+	while(++count <= 10000){
+		char buff[256];
+		sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1);
+		data train = load_cifar10_data(buff);
+		scale_data_rows(train, 1./255);
+		train_network_sgd(net, train, batch, lr, momentum, decay);
+		//printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+
+		float test_acc = network_accuracy(net, test);
+		printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc);
+		free_data(train);
+	}
+
+}
+
+void test_vince()
+{
+	network net = parse_network_cfg("cfg/vince.cfg");
+	data train = load_categorical_data_csv("images/vince.txt", 144, 2);
+	normalize_data_rows(train);
+
+	int count = 0;
+	float lr = .00005;
+	float momentum = .9;
+	float decay = 0.0001;
+	decay = 0;
+	int batch = 10000;
+	while(++count <= 10000){
+		float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+		printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
+	}
 }
 
 void test_nist()
 {
-    srand(444444);
-    srand(888888);
-    network net = parse_network_cfg("nist_basic.cfg");
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    normalize_data_rows(test);
-    //randomize_data(train);
-    int count = 0;
-    double lr = .0005;
-    double momentum = .9;
-    double decay = 0.01;
-    clock_t start = clock(), end;
-    while(++count <= 1000){
-        double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
-        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
-        end = clock();
-        printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
-        start=end;
-        //visualize_network(net);
-        //cvWaitKey(100);
-        //lr /= 2; 
-        if(count%5 == 0 && 0){
-            double train_acc = network_accuracy(net, train);
-            fprintf(stderr, "\nTRAIN: %f\n", train_acc);
-            double test_acc = network_accuracy(net, test);
-            fprintf(stderr, "TEST: %f\n\n", test_acc);
-            printf("%d, %f, %f\n", count, train_acc, test_acc);
-        }
-    }
+	srand(444444);
+	srand(888888);
+	network net = parse_network_cfg("cfg/nist.cfg");
+	data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+	data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+	normalize_data_rows(train);
+	normalize_data_rows(test);
+	//randomize_data(train);
+	int count = 0;
+	float lr = .00005;
+	float momentum = .9;
+	float decay = 0.0001;
+	decay = 0;
+	//clock_t start = clock(), end;
+	int batch = 10000;
+	while(++count <= 10000){
+		float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
+		float test_acc = network_accuracy(net, test);
+		printf("%3d %5f %5f\n",count, loss, test_acc);
+		//printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
+		//end = clock();
+		//printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+		//start=end;
+		//lr *= .5;
+	}
 }
 
 void test_ensemble()
 {
-    int i;
-    srand(888888);
-    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    normalize_data_rows(d);
-    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
-    normalize_data_rows(test);
-    data train = d;
-    /*
-       data *split = split_data(d, 1, 10);
-       data train = split[0];
-       data test = split[1];
-     */
-    matrix prediction = make_matrix(test.y.rows, test.y.cols);
-    int n = 30;
-    for(i = 0; i < n; ++i){
-        int count = 0;
-        double lr = .0005;
-        double momentum = .9;
-        double decay = .01;
-        network net = parse_network_cfg("nist.cfg");
-        while(++count <= 15){
-            double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
-            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
-            lr /= 2; 
-        }
-        matrix partial = network_predict_data(net, test);
-        double acc = matrix_accuracy(test.y, partial);
-        printf("Model Accuracy: %lf\n", acc);
-        matrix_add_matrix(partial, prediction);
-        acc = matrix_accuracy(test.y, prediction);
-        printf("Current Ensemble Accuracy: %lf\n", acc);
-        free_matrix(partial);
-    }
-    double acc = matrix_accuracy(test.y, prediction);
-    printf("Full Ensemble Accuracy: %lf\n", acc);
-}
-
-void test_kernel_update()
-{
-    srand(0);
-    double delta[] = {.1};
-    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
-    double kernel[] = {1,2,3,4,5,6,7,8,9};
-    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR);
-    layer.kernels[0].data = kernel;
-    layer.delta = delta;
-    learn_convolutional_layer(layer, input);
-    print_image(layer.kernels[0]);
-    print_image(get_convolutional_delta(layer));
-    print_image(layer.kernel_updates[0]);
-
+	int i;
+	srand(888888);
+	data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+	normalize_data_rows(d);
+	data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+	normalize_data_rows(test);
+	data train = d;
+	//   data *split = split_data(d, 1, 10);
+	//   data train = split[0];
+	//   data test = split[1];
+	matrix prediction = make_matrix(test.y.rows, test.y.cols);
+	int n = 30;
+	for(i = 0; i < n; ++i){
+		int count = 0;
+		float lr = .0005;
+		float momentum = .9;
+		float decay = .01;
+		network net = parse_network_cfg("nist.cfg");
+		while(++count <= 15){
+			float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+			printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+			lr /= 2; 
+		}
+		matrix partial = network_predict_data(net, test);
+		float acc = matrix_accuracy(test.y, partial);
+		printf("Model Accuracy: %lf\n", acc);
+		matrix_add_matrix(partial, prediction);
+		acc = matrix_accuracy(test.y, prediction);
+		printf("Current Ensemble Accuracy: %lf\n", acc);
+		free_matrix(partial);
+	}
+	float acc = matrix_accuracy(test.y, prediction);
+	printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
 void test_random_classify()
 {
-    network net = parse_network_cfg("connected.cfg");
-    matrix m = csv_to_matrix("train.csv");
-    //matrix ho = hold_out_matrix(&m, 2500);
-    double *truth = pop_column(&m, 0);
-    //double *ho_truth = pop_column(&ho, 0);
-    int i;
-    clock_t start = clock(), end;
-    int count = 0;
-    while(++count <= 300){
-        for(i = 0; i < m.rows; ++i){
-            int index = rand()%m.rows;
-            //image p = double_to_image(1690,1,1,m.vals[index]);
-            //normalize_image(p);
-            forward_network(net, m.vals[index]);
-            double *out = get_network_output(net);
-            double *delta = get_network_delta(net);
-            //printf("%f\n", out[0]);
-            delta[0] = truth[index] - out[0];
-            // printf("%f\n", delta[0]);
-            //printf("%f %f\n", truth[index], out[0]);
-            //backward_network(net, m.vals[index], );
-            update_network(net, .00001, 0,0);
-        }
-        //double test_acc = error_network(net, m, truth);
-        //double valid_acc = error_network(net, ho, ho_truth);
-        //printf("%f, %f\n", test_acc, valid_acc);
-        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
-        //if(valid_acc > .70) break;
-    }
-    end = clock();
-    FILE *fp = fopen("submission/out.txt", "w");
-    matrix test = csv_to_matrix("test.csv");
-    truth = pop_column(&test, 0);
-    for(i = 0; i < test.rows; ++i){
-        forward_network(net, test.vals[i]);
-        double *out = get_network_output(net);
-        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
-        else fprintf(fp, "1\n");
-    }
-    fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+	network net = parse_network_cfg("connected.cfg");
+	matrix m = csv_to_matrix("train.csv");
+	//matrix ho = hold_out_matrix(&m, 2500);
+	float *truth = pop_column(&m, 0);
+	//float *ho_truth = pop_column(&ho, 0);
+	int i;
+	clock_t start = clock(), end;
+	int count = 0;
+	while(++count <= 300){
+		for(i = 0; i < m.rows; ++i){
+			int index = rand()%m.rows;
+			//image p = float_to_image(1690,1,1,m.vals[index]);
+			//normalize_image(p);
+			forward_network(net, m.vals[index], 1);
+			float *out = get_network_output(net);
+			float *delta = get_network_delta(net);
+			//printf("%f\n", out[0]);
+			delta[0] = truth[index] - out[0];
+			// printf("%f\n", delta[0]);
+			//printf("%f %f\n", truth[index], out[0]);
+			//backward_network(net, m.vals[index], );
+			update_network(net, .00001, 0,0);
+		}
+		//float test_acc = error_network(net, m, truth);
+		//float valid_acc = error_network(net, ho, ho_truth);
+		//printf("%f, %f\n", test_acc, valid_acc);
+		//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
+		//if(valid_acc > .70) break;
+	}
+	end = clock();
+	FILE *fp = fopen("submission/out.txt", "w");
+	matrix test = csv_to_matrix("test.csv");
+	truth = pop_column(&test, 0);
+	for(i = 0; i < test.rows; ++i){
+		forward_network(net, test.vals[i], 0);
+		float *out = get_network_output(net);
+		if(fabs(out[0]) < .5) fprintf(fp, "0\n");
+		else fprintf(fp, "1\n");
+	}
+	fclose(fp);
+	printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
 }
 
 void test_split()
 {
-    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
-    data *split = split_data(train, 0, 13);
-    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
-}
-
-double *random_matrix(int rows, int cols)
-{
-    int i, j;
-    double *m = calloc(rows*cols, sizeof(double));
-    for(i = 0; i < rows; ++i){
-        for(j = 0; j < cols; ++j){
-            m[i*cols+j] = (double)rand()/RAND_MAX;
-        }
-    }
-    return m;
-}
-
-void test_blas()
-{
-    int m = 6025, n = 20, k = 11*11*3;
-    double *a = random_matrix(m,k);
-    double *b = random_matrix(k,n);
-    double *c = random_matrix(m,n);
-    int i;
-    for(i = 0; i<1000; ++i){
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    }
+	data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+	data *split = split_data(train, 0, 13);
+	printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
 void test_im2row()
 {
-    int h = 20;
-    int w = 20;
-    int c = 3;
-    int stride = 1;
-    int size = 11;
-    image test = make_random_image(h,w,c);
-    int mc = 1;
-    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
-    int mh = (size*size*c);
-    int msize = mc*mw*mh;
-    double *matrix = calloc(msize, sizeof(double));
-    int i;
-    for(i = 0; i < 1000; ++i){
-    im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
-    image render = double_to_image(mh, mw, mc, matrix);
-    }
+	int h = 20;
+	int w = 20;
+	int c = 3;
+	int stride = 1;
+	int size = 11;
+	image test = make_random_image(h,w,c);
+	int mc = 1;
+	int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+	int mh = (size*size*c);
+	int msize = mc*mw*mh;
+	float *matrix = calloc(msize, sizeof(float));
+	int i;
+	for(i = 0; i < 1000; ++i){
+		im2col_cpu(test.data, 1, c,  h,  w,  size,  stride, matrix);
+		//image render = float_to_image(mh, mw, mc, matrix);
+	}
 }
 
-int main()
+void flip_network()
 {
-    //test_blas();
- //test_convolve_matrix();
-//    test_im2row();
-    //test_kernel_update();
-    //test_split();
-    //test_ensemble();
-    test_nist();
-    //test_full();
-    //test_random_preprocess();
-    //test_random_classify();
-    //test_parser();
-    //test_backpropagate();
-    //test_ann();
-    //test_convolve();
-    //test_upsample();
-    //test_rotate();
-    //test_load();
-    //test_network();
-    //test_convolutional_layer();
-    //verify_convolutional_layer();
-    //test_color();
-    //cvWaitKey(0);
-    return 0;
+	network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg");
+	save_network(net, "cfg/voc_imagenet_rev.cfg");
+}
+
+void train_VOC()
+{
+	network net = parse_network_cfg("cfg/voc_start.cfg");
+	srand(2222222);
+	int i = 20;
+	char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+	float lr = .00001;
+	float momentum = .9;
+	float decay = 0.01;
+	while(i++ < 1000 || 1){
+		data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
+
+		image im = float_to_image(300, 400, 3,train.X.vals[0]);
+		show_image(im, "input");
+		visualize_network(net);
+		cvWaitKey(100);
+
+		normalize_data_rows(train);
+		clock_t start = clock(), end;
+		float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+		end = clock();
+		printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+		free_data(train);
+		if(i%10==0){
+			char buff[256];
+			sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
+			save_network(net, buff);
+		}
+		//lr *= .99;
+	}
+}
+
+int voc_size(int x)
+{
+	x = x-1+3;
+	x = x-1+3;
+	x = x-1+3;
+	x = (x-1)*2+1;
+	x = x-1+5;
+	x = (x-1)*2+1;
+	x = (x-1)*4+11;
+	return x;
+}
+
+image features_output_size(network net, IplImage *src, int outh, int outw)
+{
+	int h = voc_size(outh);
+	int w = voc_size(outw);
+	fprintf(stderr, "%d %d\n", h, w);
+
+	IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+	cvResize(src, sized, CV_INTER_LINEAR);
+	image im = ipl_to_image(sized);
+	//normalize_array(im.data, im.h*im.w*im.c);
+	translate_image(im, -144);
+	resize_network(net, im.h, im.w, im.c);
+	forward_network(net, im.data, 0);
+	image out = get_network_image(net);
+	free_image(im);
+	cvReleaseImage(&sized);
+	return copy_image(out);
+}
+
+void features_VOC_image_size(char *image_path, int h, int w)
+{
+	int j;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	fprintf(stderr, "%s\n", image_path);
+
+	IplImage* src = 0;
+	if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+	image out = features_output_size(net, src, h, w);
+	for(j = 0; j < out.c*out.h*out.w; ++j){
+		if(j != 0) printf(",");
+		printf("%g", out.data[j]);
+	}
+	printf("\n");
+	free_image(out);
+	cvReleaseImage(&src);
+}
+void visualize_imagenet_topk(char *filename)
+{
+	int i,j,k,l;
+	int topk = 10;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	list *plist = get_paths(filename);
+	node *n = plist->front;
+	int h = voc_size(1), w = voc_size(1);
+	int num = get_network_image(net).c;
+	image **vizs = calloc(num, sizeof(image*));
+	float **score = calloc(num, sizeof(float *));
+	for(i = 0; i < num; ++i){
+		vizs[i] = calloc(topk, sizeof(image));
+		for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3);
+		score[i] = calloc(topk, sizeof(float));
+	}
+
+	int count = 0;
+	while(n){
+		++count;
+		char *image_path = (char *)n->val;
+		image im = load_image(image_path, 0, 0);
+		n = n->next;
+		if(im.h < 200 || im.w < 200) continue;
+		printf("Processing %dx%d image\n", im.h, im.w);
+		resize_network(net, im.h, im.w, im.c);
+		//scale_image(im, 1./255);
+		translate_image(im, -144);
+		forward_network(net, im.data, 0);
+		image out = get_network_image(net);
+
+		int dh = (im.h - h)/(out.h-1);
+		int dw = (im.w - w)/(out.w-1);
+		//printf("%d %d\n", dh, dw);
+		for(k = 0; k < out.c; ++k){
+			float topv = 0;
+			int topi = -1;
+			int topj = -1;
+			for(i = 0; i < out.h; ++i){
+				for(j = 0; j < out.w; ++j){
+					float val = get_pixel(out, i, j, k);
+					if(val > topv){
+						topv = val;
+						topi = i;
+						topj = j;
+					}
+				}
+			}
+			if(topv){
+				image sub = get_sub_image(im, dh*topi, dw*topj, h, w);
+				for(l = 0; l < topk; ++l){
+					if(topv > score[k][l]){
+						float swap = score[k][l];
+						score[k][l] = topv;
+						topv = swap;
+
+						image swapi = vizs[k][l];
+						vizs[k][l] = sub;
+						sub = swapi;
+					}
+				}
+				free_image(sub);
+			}
+		}
+		free_image(im);
+		if(count%50 == 0){
+			image grid = grid_images(vizs, num, topk);
+			//show_image(grid, "IMAGENET Visualization");
+			save_image(grid, "IMAGENET Grid Single Nonorm");
+			free_image(grid);
+		}
+	}
+	//cvWaitKey(0);
+}
+
+void visualize_imagenet_features(char *filename)
+{
+	int i,j,k;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	list *plist = get_paths(filename);
+	node *n = plist->front;
+	int h = voc_size(1), w = voc_size(1);
+	int num = get_network_image(net).c;
+	image *vizs = calloc(num, sizeof(image));
+	for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
+	while(n){
+		char *image_path = (char *)n->val;
+		image im = load_image(image_path, 0, 0);
+		printf("Processing %dx%d image\n", im.h, im.w);
+		resize_network(net, im.h, im.w, im.c);
+		forward_network(net, im.data, 0);
+		image out = get_network_image(net);
+
+		int dh = (im.h - h)/h;
+		int dw = (im.w - w)/w;
+		for(i = 0; i < out.h; ++i){
+			for(j = 0; j < out.w; ++j){
+				image sub = get_sub_image(im, dh*i, dw*j, h, w);
+				for(k = 0; k < out.c; ++k){
+					float val = get_pixel(out, i, j, k);
+					//printf("%f, ", val);
+					image sub_c = copy_image(sub);
+					scale_image(sub_c, val);
+					add_into_image(sub_c, vizs[k], 0, 0);
+					free_image(sub_c);
+				}
+				free_image(sub);
+			}
+		}
+		//printf("\n");
+		show_images(vizs, 10, "IMAGENET Visualization");
+		cvWaitKey(1000);
+		n = n->next;
+	}
+	cvWaitKey(0);
+}
+
+void visualize_cat()
+{
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	image im = load_image("data/cat.png", 0, 0);
+	printf("Processing %dx%d image\n", im.h, im.w);
+	resize_network(net, im.h, im.w, im.c);
+	forward_network(net, im.data, 0);
+
+	visualize_network(net);
+	cvWaitKey(0);
+}
+
+void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip)
+{
+	int interval = 4;
+	int i,j;
+	network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+	char image_path[1024];
+	sprintf(image_path, "%s/%s",image_dir, image_file);
+	char out_path[1024];
+	if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
+	else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file);
+	printf("%s\n", image_file);
+
+	IplImage* src = 0;
+	if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+	if(flip)cvFlip(src, 0, 1);
+	int w = src->width;
+	int h = src->height;
+	int sbin = 8;
+	double scale = pow(2., 1./interval);
+	int m = (w<h)?w:h;
+	int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+	if(max_scale < interval) error("max_scale must be >= interval");
+	image *ims = calloc(max_scale+interval, sizeof(image));
+
+	for(i = 0; i < interval; ++i){
+		double factor = 1./pow(scale, i);
+		double ih =  round(h*factor);
+		double iw =  round(w*factor);
+		int ex_h = round(ih/4.) - 2;
+		int ex_w = round(iw/4.) - 2;
+		ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+		ih =  round(h*factor);
+		iw =  round(w*factor);
+		ex_h = round(ih/8.) - 2;
+		ex_w = round(iw/8.) - 2;
+		ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+		for(j = i+interval; j < max_scale; j += interval){
+			factor /= 2.;
+			ih =  round(h*factor);
+			iw =  round(w*factor);
+			ex_h = round(ih/8.) - 2;
+			ex_w = round(iw/8.) - 2;
+			ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+		}
+	}
+	FILE *fp = fopen(out_path, "w");
+	if(fp == 0) file_error(out_path);
+	for(i = 0; i < max_scale+interval; ++i){
+		image out = ims[i];
+		fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+		for(j = 0; j < out.c*out.h*out.w; ++j){
+			if(j != 0)fprintf(fp, ",");
+			float o = out.data[j];
+			if(o < 0) o = 0;
+			fprintf(fp, "%g", o);
+		}
+		fprintf(fp, "\n");
+		free_image(out);
+	}
+	free(ims);
+	fclose(fp);
+	cvReleaseImage(&src);
+}
+
+void test_distribution()
+{
+	IplImage* img = 0;
+	if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
+	network net = parse_network_cfg("cfg/voc_features.cfg");
+	int h = img->height/8-2;
+	int w = img->width/8-2;
+	image out = features_output_size(net, img, h, w);
+	int c = out.c;
+	out.c = 1;
+	show_image(out, "output");
+	out.c = c;
+	image input = ipl_to_image(img);
+	show_image(input, "input");
+	CvScalar s;
+	int i,j;
+	image affects = make_image(input.h, input.w, 1);
+	int count = 0;
+	for(i = 0; i<img->height; i += 1){
+		for(j = 0; j < img->width; j += 1){
+			IplImage *copy = cvCloneImage(img);
+			s=cvGet2D(copy,i,j); // get the (i,j) pixel value
+			printf("%d/%d\n", count++, img->height*img->width);
+			s.val[0]=0;
+			s.val[1]=0;
+			s.val[2]=0;
+			cvSet2D(copy,i,j,s); // set the (i,j) pixel value
+			image mod = features_output_size(net, copy, h, w);
+			image dist = image_distance(out, mod);
+			show_image(affects, "affects");
+			cvWaitKey(1);
+			cvReleaseImage(&copy);
+			//affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
+			affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
+			free_image(mod);
+			free_image(dist);
+		}
+	}
+	show_image(affects, "Origins");
+	cvWaitKey(0);
+	cvWaitKey(0);
+}
+
+
+int main(int argc, char *argv[])
+{
+	//train_full();
+	//test_distribution();
+	//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+
+	//test_blas();
+	//test_visualize();
+	//test_gpu_blas();
+	//test_blas();
+	//test_convolve_matrix();
+	//    test_im2row();
+	//test_split();
+	//test_ensemble();
+	test_nist();
+	//test_cifar10();
+	//test_vince();
+	//test_full();
+	//train_VOC();
+	//features_VOC_image(argv[1], argv[2], argv[3], 0);
+	//features_VOC_image(argv[1], argv[2], argv[3], 1);
+	//features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
+	//visualize_imagenet_features("data/assira/train.list");
+	//visualize_imagenet_topk("data/VOC2012.list");
+	//visualize_cat();
+	//flip_network();
+	//test_visualize();
+	fprintf(stderr, "Success!\n");
+	//test_random_preprocess();
+	//test_random_classify();
+	//test_parser();
+	//test_backpropagate();
+	//test_ann();
+	//test_convolve();
+	//test_upsample();
+	//test_rotate();
+	//test_load();
+	//test_network();
+	//test_convolutional_layer();
+	//verify_convolutional_layer();
+	//test_color();
+	//cvWaitKey(0);
+	return 0;
 }

--
Gitblit v1.10.0